Combined ALK and MDM2 inhibition increases antitumor activity and overcomes resistance in human ALK mutant neuroblastoma cell lines and xenograft models

  1. Hui Qin Wang
  2. Ensar Halilovic
  3. Xiaoyan Li
  4. Jinsheng Liang
  5. Yichen Cao
  6. Daniel P Rakiec
  7. David A Ruddy
  8. Sebastien Jeay
  9. Jens U Wuerthner
  10. Noelito Timple
  11. Shailaja Kasibhatla
  12. Nanxin Li
  13. Juliet A Williams
  14. William R Sellers
  15. Alan Huang
  16. Fang Li  Is a corresponding author
  1. Novartis Institutes for BioMedical Research, United States
  2. Novartis Institutes for BioMedical Research, Switzerland
  3. Genomics Institute of the Novartis Research Foundation, United States

Abstract

The efficacy of ALK inhibitors in patients with ALK-mutant neuroblastoma is limited, highlighting the need to improve their effectiveness in these patients. To this end we sought to develop a combination strategy to enhance the antitumor activity of ALK inhibitor monotherapy in human neuroblastoma cell lines and xenograft models expressing activated ALK. Herein, we report that combined inhibition of ALK and MDM2 induced a complementary set of anti-proliferative and pro-apoptotic proteins. Consequently, this combination treatment synergistically inhibited proliferation of TP53 wild-type neuroblastoma cells harboring ALK amplification or mutations in vitro, and resulted in complete and durable responses in neuroblastoma xenografts derived from these cells. We further demonstrate that concurrent inhibition of MDM2 and ALK was able to overcome ceritinib resistance conferred by MYCN upregulation in vitro and in vivo. Together, combined inhibition of ALK and MDM2 may provide an effective treatment for TP53 wild-type neuroblastoma with ALK aberrations.

Article and author information

Author details

  1. Hui Qin Wang

    Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ensar Halilovic

    Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Xiaoyan Li

    Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jinsheng Liang

    Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yichen Cao

    Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel P Rakiec

    Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. David A Ruddy

    Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Sebastien Jeay

    Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Jens U Wuerthner

    Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  10. Noelito Timple

    Genomics Institute of the Novartis Research Foundation, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Shailaja Kasibhatla

    Genomics Institute of the Novartis Research Foundation, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Nanxin Li

    Genomics Institute of the Novartis Research Foundation, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Juliet A Williams

    Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. William R Sellers

    Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Alan Huang

    Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Fang Li

    Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
    For correspondence
    fli@tangotx.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0497-4200

Funding

Novartis

  • Fang Li

The research was funded by Novartis, Inc., where all authors were employees at the time the study was conducted. The authors declare no other competing financial interests.

Ethics

Animal experimentation: All in vivo studies were reviewed and approved by the Novartis Institutes of Biomedical Research Institutional Animal Care and Use Committee (IACUC) in accordance with applicable local, state, and federal regulations.If needed, a letter from the IACUC Chair can be provided to confirm that all in vivo studies were reviewed and approved by the Novartis IACUC. Below is the contact of the Novartis IACUC Chair.CeCe Brotchie-Fine, MA, CPIAManager, Animal Welfare ComplianceIACUC Chair & Animal Welfare OfficerT +1 617 871 5064M+1 617 834 4784Email: Candice.brotchie-fine@novartis.comNovartis Institutes for BioMedical Research, Inc.700 Main Street, 460 ACambridge, MA 02139 USA

Copyright

© 2017, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,596
    views
  • 489
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hui Qin Wang
  2. Ensar Halilovic
  3. Xiaoyan Li
  4. Jinsheng Liang
  5. Yichen Cao
  6. Daniel P Rakiec
  7. David A Ruddy
  8. Sebastien Jeay
  9. Jens U Wuerthner
  10. Noelito Timple
  11. Shailaja Kasibhatla
  12. Nanxin Li
  13. Juliet A Williams
  14. William R Sellers
  15. Alan Huang
  16. Fang Li
(2017)
Combined ALK and MDM2 inhibition increases antitumor activity and overcomes resistance in human ALK mutant neuroblastoma cell lines and xenograft models
eLife 6:e17137.
https://doi.org/10.7554/eLife.17137

Share this article

https://doi.org/10.7554/eLife.17137

Further reading

    1. Cancer Biology
    2. Medicine
    Patrick Brandt, Dawayne Whittington ... Rebekah L Layton
    Research Article

    A doctoral-level internship program was developed at the University of North Carolina at Chapel Hill with the intent to create customizable experiential learning opportunities for biomedical trainees to support career exploration, preparation, and transition into their postgraduate professional roles. We report the outcomes of this program over a 5-year period. During that 5-year period, 123 internships took place at over 70 partner sites, representing at least 20 academic, for-profit, and non-profit career paths in the life sciences. A major goal of the program was to enhance trainees’ skill development and expertise in careers of interest. The benefits of the internship program for interns, host/employer, and supervisor/principal investigator were assessed using a mixed-methods approach, including surveys with closed- and open-ended responses as well as focus group interviews. Balancing stakeholder interests is key to creating a sustainable program with widespread support; hence, the level of support from internship hosts and faculty members were the key metrics analyzed throughout. We hypothesized that once a successful internship program was implemented, faculty culture might shift to be more accepting of internships; indeed, the data quantifying faculty attitudes support this. Furthermore, host motivation and performance expectations of interns were compared with results achieved, and this data revealed both expected and surprising benefits to hosts. Data suggests a myriad of benefits for each stakeholder group, and themes are cataloged and discussed. Program outcomes, evaluation data, policies, resources, and best practices developed through the implementation of this program are shared to provide resources that facilitate the creation of similar internship programs at other institutions. Program development was initially spurred by National Institutes of Health pilot funding, thereafter, successfully transitioning from a grant-supported model, to an institutionally supported funding model to achieve long-term programmatic sustainability.

    1. Cancer Biology
    Ke Ning, Yuanyuan Xie ... Ling Yu
    Research Article

    For traditional laboratory microscopy observation, the multi-dimensional, real-time, in situ observation of three-dimensional (3D) tumor spheroids has always been the pain point in cell spheroid observation. In this study, we designed a side-view observation petri dish/device that reflects light, enabling in situ observation of the 3D morphology of cell spheroids using conventional inverted laboratory microscopes. We used a 3D-printed handle and frame to support a first-surface mirror, positioning the device within a cell culture petri dish to image cell spheroid samples. The imaging conditions, such as the distance between the mirror and the 3D spheroids, the light source, and the impact of the culture medium, were systematically studied to validate the in situ side-view observation. The results proved that placing the surface mirror adjacent to the spheroids enables non-destructive in situ real-time tracking of tumor spheroid formation, migration, and fusion dynamics. The correlation between spheroid thickness and dark core appearance under light microscopy and the therapeutic effects of chemotherapy doxorubicin and natural killer cells on spheroids’ 3D structure was investigated.