1. Structural Biology and Molecular Biophysics
  2. Neuroscience
Download icon

Definition of two agonist types at the mammalian cold-activated channel TRPM8

Research Article
  • Cited 9
  • Views 1,957
  • Annotations
Cite this article as: eLife 2016;5:e17240 doi: 10.7554/eLife.17240

Abstract

Various TRP channels act as polymodal sensors of thermal and chemical stimuli, but the mechanisms whereby chemical ligands impact on TRP channel gating are poorly understood. Here we show that AITC (allyl isothiocyanate; mustard oil) and menthol represent two distinct types of ligands at the mammalian cold sensor TRPM8. Kinetic analysis of channel gating revealed that AITC acts by destabilizing the closed channel, whereas menthol stabilizes the open channel, relative to the transition state. Based on these differences, we classify agonists as either type I (menthol-like) or type II (AITC-like), and provide a kinetic model that faithfully reproduces their differential effects. We further demonstrate that type I and type II agonists have a distinct impact on TRPM8 currents and TRPM8-mediated calcium signals in excitable cells. These findings provide a theoretical framework for understanding the differential actions of TRP channel ligands, with important ramifications for TRP channel structure-function analysis and pharmacology.

Article and author information

Author details

  1. Annelies Janssens

    Laboratory of Ion Channel Research, University of Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  2. Maarten Gees

    Laboratory of Ion Channel Research, University of Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. Balazs Istvan Toth

    Laboratory of Ion Channel Research, University of Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  4. Debapriya Ghosh

    Laboratory of Ion Channel Research, University of Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  5. Marie Mulier

    Laboratory of Ion Channel Research, University of Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  6. Rudi Vennekens

    Laboratory of Ion Channel Research, University of Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  7. Joris Vriens

    Laboratory of Ion Channel Research, University of Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  8. Karel Talavera

    Laboratory of Ion Channel Research, University of Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  9. Thomas Voets

    Laboratory of Ion Channel Research, University of Leuven, Leuven, Belgium
    For correspondence
    thomas.voets@med.kuleuven.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5526-5821

Funding

Fonds Wetenschappelijk Onderzoek (G.0565.07)

  • Thomas Voets

Onderzoeksraad, KU Leuven (PF-TRPLe)

  • Rudi Vennekens
  • Thomas Voets

Belspo (IUAP P7/13)

  • Rudi Vennekens
  • Karel Talavera
  • Thomas Voets

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were approved by the KU Leuven Ethical Committee Laboratory Animals under project number P192/2014.

Reviewing Editor

  1. Kenton J Swartz, National Institutes of Health, United States

Publication history

  1. Received: April 25, 2016
  2. Accepted: July 22, 2016
  3. Accepted Manuscript published: July 23, 2016 (version 1)
  4. Accepted Manuscript updated: July 25, 2016 (version 2)
  5. Version of Record published: August 15, 2016 (version 3)

Copyright

© 2016, Annelies et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,957
    Page views
  • 456
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Structural Biology and Molecular Biophysics
    Daniel K Weber et al.
    Research Article

    Phospholamban (PLN) is a mini-membrane protein that directly controls the cardiac Ca2+-transport response to b-adrenergic stimulation, thus modulating cardiac output during the fight-or-flight response. In the sarcoplasmic reticulum membrane, PLN binds to the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), keeping this enzyme's function within a narrow physiological window. PLN phosphorylation by cAMP-dependent protein kinase A or increase in Ca2+ concentration reverses the inhibitory effects through an unknown mechanism. Using oriented-sample solid-state NMR spectroscopy and replica-averaged NMR-restrained structural refinement, we reveal that phosphorylation of PLN;s cytoplasmic regulatory domain signals the disruption of several inhibitory contacts at the transmembrane binding interface of the SERCA-PLN complex that are propagated to the enzyme;s active site, augmenting Ca2+ transport. Our findings address long-standing questions about SERCA regulation, epitomizing a signal transduction mechanism operated by posttranslationally modified bitopic membrane proteins.

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Laura Plassart et al.
    Research Article Updated

    Preventing premature interaction of pre-ribosomes with the translation apparatus is essential for translational accuracy. Hence, the final maturation step releasing functional 40S ribosomal subunits, namely processing of the 18S ribosomal RNA 3′ end, is safeguarded by the protein DIM2, which both interacts with the endoribonuclease NOB1 and masks the rRNA cleavage site. To elucidate the control mechanism that unlocks NOB1 activity, we performed cryo-electron microscopy analysis of late human pre-40S particles purified using a catalytically inactive form of the ATPase RIO1. These structures, together with in vivo and in vitro functional analyses, support a model in which ATP-loaded RIO1 cooperates with ribosomal protein RPS26/eS26 to displace DIM2 from the 18S rRNA 3′ end, thereby triggering final cleavage by NOB1; release of ADP then leads to RIO1 dissociation from the 40S subunit. This dual key lock mechanism requiring RIO1 and RPS26 guarantees the precise timing of pre-40S particle conversion into translation-competent ribosomal subunits.