Cortical flow aligns actin filaments to form a furrow
Abstract
Cytokinesis in eukaryotic cells is often accompanied by actomyosin cortical flow. Over 30 years ago, Borisy and White proposed that cortical flow converging upon the cell equator compresses the actomyosin network to mechanically align actin filaments. However, actin filaments also align via search-and-capture, and to what extent compression by flow or active alignment drive furrow formation remains unclear. Here we quantify the dynamical organization of actin filaments at the onset of ring assembly in the C. elegans zygote, and provide a framework for determining emergent actomyosin material parameters by use of active nematic gel theory. We characterize flow-alignment coupling, and verify at a quantitative level that compression by flow drives ring formation. Finally, we find that active alignment enhances, but is not required for ring formation. Our work characterizes the physical mechanisms of actomyosin ring formation and highlights the role of flow as a central organizer of actomyosin network architecture.
Article and author information
Author details
Funding
Human Frontier Science Program (LT000926/ 2012)
- Anne-Cecile Reymann
Human Frontier Science Program (RGP0023/2014)
- Stephan W Grill
European Research Council (281903)
- Stephan W Grill
Deutsche Forschungsgemeinschaft (SPP 1782, GR 3271/2-1)
- Stephan W Grill
Deutsche Forschungsgemeinschaft (DFG-GSC 97/3)
- Anna Erzberger
Max-Planck-Gesellschaft
- Guillaume Salbreux
- Stephan W Grill
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2016, Reymann et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.