1. Guo-Min Li  Is a corresponding author
  1. University of Southern California Keck School of Medicine, United States

Errors made when DNA is replicated can lead to cancer and genetic disorders, so cells rely on a system called mismatch repair (MMR) to remove many of the errors from newly synthesized DNA (Hombauer et al., 2011Kunkel and Erie, 2015; Simmons et al., 2008). These errors include mismatches that occur when the wrong DNA base is added into the new DNA strand (i.e. a base that does not match the one in the template strand). MMR must deal with these mistakes before the DNA is repackaged into nucleosomes, which would block the repair mechanisms. As such, a long-standing question in this field is how the MMR system discriminates the new strand (which contains the errors) from the template (which is error-free) both quickly and accurately.

Now, in eLife, Tatsuro Takahashi and colleagues at Osaka University and Kyushu University report a new twist in this story (Kawasoe et al., 2016). Newly synthesized strands of DNA have small gaps or nicks (Kunkel and Erie, 2015), and such signals can be used to direct MMR to a specific DNA strand in cell-free experiments (Holmes et al., 1990). However, Takahashi and colleagues – who include Yoshitaka Kawasoe as first author – found, via experiments with Xenopus cell extracts, that MMR can still correctly identify the new DNA strand even after any gaps or nicks had been filled in. This unexpectedly implied that there must be a second signal that allows MMR in eukaryotes to distinguish the new DNA strand from the template.

So, what is this second signal? PCNA is a ring-shaped complex that acts as a “sliding clamp” to coordinate DNA replication by traveling along the DNA template. Eukaryotes use PCNA and a mismatch recognition complex called MutSα to start MMR (Kadyrov et al., 2006Kunkel and Erie, 2015; Umar et al., 1996), and these two complexes interact directly at the site of a mismatch (Clark et al., 1999; Flores-Rozas et al., 2000; Kleczkowska et al., 2001). Kawasoe et al. now reveal that the PCNA complex provides the secondary signal that allows the cell to “remember” which strand of DNA is which (Figure 1A,B).

PCNA binds to DNA in an asymmetric way.

Base-base mismatches (dashed circle) result when a base is added into a newly synthesized DNA strand (red) that does not match the corresponding base in the template strand (blue). (A) Newly synthesized strands of DNA often have small gaps that are filled in and ligated later, and the ring-shaped complex PCNA forms non-identical complexes with 5’-gapped (top) or 3’-gapped (bottom) heteroduplex DNA. Note that one side of the complex (green) always faces towards the 5’ end of the new DNA strand, while the other (yellow) faces towards the 3’-end. (B) The asymmetry of the PCNA-DNA complexes is conserved after the DNA gaps are filled in and ligated; this could allow DNA mismatch repair to distinguish the error-containing new strand from the error-free template. (C) Kawasoe et al. show that PCNA spends little time on DNA containing a mismatch in the absence of the mismatch recognition complex MutSα (top). PCNA spends much longer on the DNA when MutSα is present (middle), but not quite so long if MutSα’s PCNA interacting protein (PIP) motif is removed (MutSα∆PIP; bottom). Times given in figure are the half-lives of the PCNA-DNA complexes (t1/2).

The PCNA clamp loads onto DNA ends in an asymmetric way (Pluciennik et al., 2010). This means that one side of the ring complex always faces towards the 5’-end of the newly synthesized DNA, while the other faces towards its 3’-end. Kawasoe et al. propose that this inbuilt asymmetry is used to direct the enzymes that correct mismatches towards the new strand and not the template strand.

Kawasoe et al. also found that MutSα strongly encourages the PCNA clamp to remain loaded on the DNA. They showed that this effect was much weaker if MutSα lacked the domain that it uses to interact with PCNA (Figure 1C). These findings further suggest that the interaction between MutSα and PCNA might act in favor of MMR, rather than DNA replication. If, as Kawasoe et al. suggest, the asymmetric PCNA-DNA complex forms a biological “memory” of which DNA strand is which, then the interaction between MutSα and PCNA appears to make that memory more stable over time, similar to converting short-term memories to long-term ones.

However, several questions remain to be answered. For example, the PCNA asymmetry and its interaction with MutSα may create a long-term “memory” for strand-specific MMR, but why do cells delay the packing of DNA into nucleosomes? Also, do the various modifications that are made to PCNA (such as ubiquitination and phosphorylation; Ortega et al., 2015) alter its role in strand-discrimination in MMR? Finally, does MMR in bacteria also use β clamp (the bacterial counterpart of PCNA) in the same way (Simmons et al., 2008)? Additional studies are now needed to answer these important questions.

References

Article and author information

Author details

  1. Guo-Min Li

    Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, United States
    For correspondence
    guominli@usc.edu
    Competing interests
    The author declares that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9842-4578

Publication history

  1. Version of Record published:

Copyright

© 2016, Li

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,165
    views
  • 148
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Guo-Min Li
(2016)
DNA Repair: Clamping down on mismatches
eLife 5:e18365.
https://doi.org/10.7554/eLife.18365
  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.