Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development

  1. Felipe Mora-Bermúdez
  2. Farhath Badsha
  3. Sabina Kanton
  4. J Gray Camp
  5. Benjamin Vernot
  6. Kathrin Köhler
  7. Birger Voigt
  8. Keisuke Okita
  9. Tomislav Maricic
  10. Zhisong He
  11. Robert Lachmann
  12. Svante Pääbo  Is a corresponding author
  13. Barbara Treutlein  Is a corresponding author
  14. Wieland B Huttner  Is a corresponding author
  1. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
  2. Max Planck Institute for Evolutionary Anthropology, Germany
  3. Kyoto University, Japan
  4. CAS-MPG Partner Institute for Computational Biology, China
  5. Technische Universität Dresden, Germany

Abstract

Human neocortex expansion likely contributed to the remarkable cognitive abilities of humans. This expansion is thought to primarily reflect differences in proliferation versus differentiation of neural progenitors during cortical development. Here, we have searched for such differences by analysing cerebral organoids from human and chimpanzees using immunohistochemistry, live imaging, and single-cell transcriptomics. We find that the cytoarchitecture, cell type composition, and neurogenic gene expression programs of humans and chimpanzees are remarkably similar. Notably, however, live imaging of apical progenitor mitosis uncovered a lengthening of prometaphase-metaphase in humans compared to chimpanzees that is specific to proliferating progenitors and not observed in non-neural cells. Consistent with this, the small set of genes more highly expressed in human apical progenitors points to increased proliferative capacity, and the proportion of neurogenic basal progenitors is lower in humans. These subtle differences in cortical progenitors between humans and chimpanzees may have consequences for human neocortex evolution.

Article and author information

Author details

  1. Felipe Mora-Bermúdez

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Farhath Badsha

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Sabina Kanton

    Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. J Gray Camp

    Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Benjamin Vernot

    Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Kathrin Köhler

    Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Birger Voigt

    Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Keisuke Okita

    Department of Reprogramming Science, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Tomislav Maricic

    Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Zhisong He

    CAS-MPG Partner Institute for Computational Biology, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Robert Lachmann

    Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Svante Pääbo

    Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    For correspondence
    paabo@eva.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4143-7201
  13. Barbara Treutlein

    Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    For correspondence
    barbara_treutlein@eva.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
  14. Wieland B Huttner

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    For correspondence
    huttner@mpi-cbg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4143-7201

Funding

Boehringer Ingelheim Fonds

  • Sabina Kanton

Paul G. Allen Family Foundation

  • Svante Pääbo

Deutsche Forschungsgemeinschaft (DFG, SFB 655, A2)

  • Wieland B Huttner

European Research Council (ERC, 250197)

  • Wieland B Huttner

DFG-Funded Center for Regenerative Therapies Dresden

  • Wieland B Huttner

Fonds der Chemischen Industrie

  • Wieland B Huttner

Max Planck Society

  • Svante Pääbo
  • Barbara Treutlein
  • Wieland B Huttner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mice were kept pathogen-free at the Biomedical Services Facility of the MPI-CBG. All experiments using mice were performed according to the German Animal Welfare Legislation. In addition, research was approved by the Institutional Review Board of the Max Planck Institute of Molecular Cell Biology and Genetics.

Human subjects: Human fetal brain tissue (11-13 weeks post conception (wpc)) was obtained with informed written maternal consent followed by elective pregnancy termination. Research involving human tissue was approved by the Ethical Review Committee of the Universitaetsklinikum Carl Gustav Carus of the Technische Universitaet Dresden. In addition, research was approved by the Institutional Review Board of the Max Planck Institute of Molecular Cell Biology and Genetics.

Copyright

© 2016, Mora-Bermúdez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 61,835
    views
  • 2,418
    downloads
  • 220
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Felipe Mora-Bermúdez
  2. Farhath Badsha
  3. Sabina Kanton
  4. J Gray Camp
  5. Benjamin Vernot
  6. Kathrin Köhler
  7. Birger Voigt
  8. Keisuke Okita
  9. Tomislav Maricic
  10. Zhisong He
  11. Robert Lachmann
  12. Svante Pääbo
  13. Barbara Treutlein
  14. Wieland B Huttner
(2016)
Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development
eLife 5:e18683.
https://doi.org/10.7554/eLife.18683

Share this article

https://doi.org/10.7554/eLife.18683

Further reading

    1. Cell Biology
    Affiong Ika Oqua, Kin Chao ... Alejandra Tomas
    Research Article

    G protein-coupled receptors (GPCRs) are integral membrane proteins which closely interact with their plasma membrane lipid microenvironment. Cholesterol is a lipid enriched at the plasma membrane with pivotal roles in the control of membrane fluidity and maintenance of membrane microarchitecture, directly impacting on GPCR stability, dynamics, and function. Cholesterol extraction from pancreatic beta cells has previously been shown to disrupt the internalisation, clustering, and cAMP responses of the glucagon-like peptide-1 receptor (GLP-1R), a class B1 GPCR with key roles in the control of blood glucose levels via the potentiation of insulin secretion in beta cells and weight reduction via the modulation of brain appetite control centres. Here, we unveil the detrimental effect of a high cholesterol diet on GLP-1R-dependent glucoregulation in vivo, and the improvement in GLP-1R function that a reduction in cholesterol synthesis using simvastatin exerts in pancreatic islets. We next identify and map sites of cholesterol high occupancy and residence time on active vs inactive GLP-1Rs using coarse-grained molecular dynamics (cgMD) simulations, followed by a screen of key residues selected from these sites and detailed analyses of the effects of mutating one of these, Val229, to alanine on GLP-1R-cholesterol interactions, plasma membrane behaviours, clustering, trafficking and signalling in INS-1 832/3 rat pancreatic beta cells and primary mouse islets, unveiling an improved insulin secretion profile for the V229A mutant receptor. This study (1) highlights the role of cholesterol in regulating GLP-1R responses in vivo; (2) provides a detailed map of GLP-1R - cholesterol binding sites in model membranes; (3) validates their functional relevance in beta cells; and (4) highlights their potential as locations for the rational design of novel allosteric modulators with the capacity to fine-tune GLP-1R responses.

    1. Cell Biology
    2. Immunology and Inflammation
    Alejandro Rosell, Agata Adelajda Krygowska ... Esther Castellano Sanchez
    Research Article

    Macrophages are crucial in the body’s inflammatory response, with tightly regulated functions for optimal immune system performance. Our study reveals that the RAS–p110α signalling pathway, known for its involvement in various biological processes and tumourigenesis, regulates two vital aspects of the inflammatory response in macrophages: the initial monocyte movement and later-stage lysosomal function. Disrupting this pathway, either in a mouse model or through drug intervention, hampers the inflammatory response, leading to delayed resolution and the development of more severe acute inflammatory reactions in live models. This discovery uncovers a previously unknown role of the p110α isoform in immune regulation within macrophages, offering insight into the complex mechanisms governing their function during inflammation and opening new avenues for modulating inflammatory responses.