Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development

  1. Felipe Mora-Bermúdez
  2. Farhath Badsha
  3. Sabina Kanton
  4. J Gray Camp
  5. Benjamin Vernot
  6. Kathrin Köhler
  7. Birger Voigt
  8. Keisuke Okita
  9. Tomislav Maricic
  10. Zhisong He
  11. Robert Lachmann
  12. Svante Pääbo  Is a corresponding author
  13. Barbara Treutlein  Is a corresponding author
  14. Wieland B Huttner  Is a corresponding author
  1. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
  2. Max Planck Institute for Evolutionary Anthropology, Germany
  3. Kyoto University, Japan
  4. CAS-MPG Partner Institute for Computational Biology, China
  5. Technische Universität Dresden, Germany

Abstract

Human neocortex expansion likely contributed to the remarkable cognitive abilities of humans. This expansion is thought to primarily reflect differences in proliferation versus differentiation of neural progenitors during cortical development. Here, we have searched for such differences by analysing cerebral organoids from human and chimpanzees using immunohistochemistry, live imaging, and single-cell transcriptomics. We find that the cytoarchitecture, cell type composition, and neurogenic gene expression programs of humans and chimpanzees are remarkably similar. Notably, however, live imaging of apical progenitor mitosis uncovered a lengthening of prometaphase-metaphase in humans compared to chimpanzees that is specific to proliferating progenitors and not observed in non-neural cells. Consistent with this, the small set of genes more highly expressed in human apical progenitors points to increased proliferative capacity, and the proportion of neurogenic basal progenitors is lower in humans. These subtle differences in cortical progenitors between humans and chimpanzees may have consequences for human neocortex evolution.

Article and author information

Author details

  1. Felipe Mora-Bermúdez

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Farhath Badsha

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Sabina Kanton

    Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. J Gray Camp

    Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Benjamin Vernot

    Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Kathrin Köhler

    Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Birger Voigt

    Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Keisuke Okita

    Department of Reprogramming Science, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Tomislav Maricic

    Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Zhisong He

    CAS-MPG Partner Institute for Computational Biology, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Robert Lachmann

    Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Svante Pääbo

    Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    For correspondence
    paabo@eva.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
  13. Barbara Treutlein

    Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    For correspondence
    barbara_treutlein@eva.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
  14. Wieland B Huttner

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    For correspondence
    huttner@mpi-cbg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4143-7201

Funding

Boehringer Ingelheim Fonds

  • Sabina Kanton

Paul G. Allen Family Foundation

  • Svante Pääbo

Deutsche Forschungsgemeinschaft (DFG, SFB 655, A2)

  • Wieland B Huttner

European Research Council (ERC, 250197)

  • Wieland B Huttner

DFG-Funded Center for Regenerative Therapies Dresden

  • Wieland B Huttner

Fonds der Chemischen Industrie

  • Wieland B Huttner

Max Planck Society

  • Svante Pääbo
  • Barbara Treutlein
  • Wieland B Huttner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mice were kept pathogen-free at the Biomedical Services Facility of the MPI-CBG. All experiments using mice were performed according to the German Animal Welfare Legislation. In addition, research was approved by the Institutional Review Board of the Max Planck Institute of Molecular Cell Biology and Genetics.

Human subjects: Human fetal brain tissue (11-13 weeks post conception (wpc)) was obtained with informed written maternal consent followed by elective pregnancy termination. Research involving human tissue was approved by the Ethical Review Committee of the Universitaetsklinikum Carl Gustav Carus of the Technische Universitaet Dresden. In addition, research was approved by the Institutional Review Board of the Max Planck Institute of Molecular Cell Biology and Genetics.

Copyright

© 2016, Mora-Bermúdez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 61,016
    views
  • 2,366
    downloads
  • 207
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Felipe Mora-Bermúdez
  2. Farhath Badsha
  3. Sabina Kanton
  4. J Gray Camp
  5. Benjamin Vernot
  6. Kathrin Köhler
  7. Birger Voigt
  8. Keisuke Okita
  9. Tomislav Maricic
  10. Zhisong He
  11. Robert Lachmann
  12. Svante Pääbo
  13. Barbara Treutlein
  14. Wieland B Huttner
(2016)
Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development
eLife 5:e18683.
https://doi.org/10.7554/eLife.18683

Share this article

https://doi.org/10.7554/eLife.18683

Further reading

    1. Cell Biology
    Parijat Biswas, Priyanka Roy ... Deepak Kumar Sinha
    Research Article

    The excessive cosolute densities in the intracellular fluid create a physicochemical condition called macromolecular crowding (MMC). Intracellular MMC entropically maintains the biochemical thermodynamic equilibria by favouring associative reactions while hindering transport processes. Rapid cell volume shrinkage during extracellular hypertonicity elevates the MMC and disrupts the equilibria, potentially ushering cell death. Consequently, cells actively counter the hypertonic stress through regulatory volume increase (RVI) and restore the MMC homeostasis. Here, we establish fluorescence anisotropy of EGFP as a reliable tool for studying cellular MMC and explore the spatiotemporal dynamics of MMC during cell volume instabilities under multiple conditions. Our studies reveal that the actin cytoskeleton enforces spatially varying MMC levels inside adhered cells. Within cell populations, MMC is uncorrelated with nuclear DNA content but anti-correlated with the cell spread area. Although different cell lines have statistically similar MMC distributions, their responses to extracellular hypertonicity vary. The intensity of the extracellular hypertonicity determines a cell's ability for RVI, which correlates with Nuclear Factor Kappa Beta (NFkB) activation. Pharmacological inhibition and knockdown experiments reveal that Tumour Necrosis Factor Receptor 1 (TNFR1) initiates the hypertonicity induced NFkB signalling and RVI. At severe hypertonicities, the elevated MMC amplifies cytoplasmic microviscosity and hinders Receptor Interacting Protein Kinase 1 (RIPK1) recruitment at the TNFR1 complex, incapacitating the TNFR1-NFkB signalling and consequently, RVI. Together, our studies unveil the involvement of TNFR1-NFkB signalling in modulating RVI and demonstrate the pivotal role of MMC in determining cellular osmoadaptability.

    1. Cell Biology
    2. Immunology and Inflammation
    Armando Montoya-Garcia, Idaira M Guerrero-Fonseca ... Michael Schnoor
    Research Article

    Arpin was discovered as an inhibitor of the Arp2/3 complex localized at the lamellipodial tip of fibroblasts, where it regulated migration steering. Recently, we showed that arpin stabilizes the epithelial barrier in an Arp2/3-dependent manner. However, the expression and functions of arpin in endothelial cells (EC) have not yet been described. Arpin mRNA and protein are expressed in EC and downregulated by pro-inflammatory cytokines. Arpin depletion in Human Umbilical Vein Endothelial Cells causes the formation of actomyosin stress fibers leading to increased permeability in an Arp2/3-independent manner. Instead, inhibitors of ROCK1 and ZIPK, kinases involved in the generation of stress fibers, normalize the loss-of-arpin effects on actin filaments and permeability. Arpin-deficient mice are viable but show a characteristic vascular phenotype in the lung including edema, microhemorrhage, and vascular congestion, increased F-actin levels, and vascular permeability. Our data show that, apart from being an Arp2/3 inhibitor, arpin is also a regulator of actomyosin contractility and endothelial barrier integrity.