Abstract

Translational repression and mRNA degradation are critical mechanisms of posttranscriptional gene regulation that help cells respond to internal and external cues. In response to certain stress conditions, many mRNA decay factors are enriched in processing bodies (PBs), cellular structures involved in degradation and/or storage of mRNAs. Yet, how cells regulate assembly and disassembly of PBs remains poorly understood. Here, we show that in budding yeast, mutations in the DEAD-box ATPase Dhh1 that prevent ATP hydrolysis, or that affect the interaction between Dhh1 and Not1, the central scaffold of the Ccr4-NOT complex and an activator of the Dhh1 ATPase, prevent PB disassembly in vivo. Intriguingly, this process can be recapitulated in vitro, since recombinant Dhh1 and RNA, in the presence of ATP, phase-separate into liquid droplets that rapidly dissolve upon addition of Not1. Our results identify the ATPase activity of Dhh1 as a critical regulator of PB formation.

Article and author information

Author details

  1. Christopher Frederick Mugler

    University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8258-1192
  2. Maria Hondele

    ETH Zurich, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  3. Stephanie Heinrich

    ETH Zurich, Zurich, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1607-4525
  4. Ruchika Sachdev

    ETH Zurich, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  5. Pascal Vallotton

    ETH Zurich, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  6. Adriana Y Koek

    University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  7. Leon Y Chan

    University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  8. Karsten Weis

    ETH Zurich, Zurich, Switzerland
    For correspondence
    karsten.weis@bc.biol.ethz.ch
    Competing interests
    Karsten Weis, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7224-925X

Funding

National Institute of General Medical Sciences (R01GM058065)

  • Karsten Weis

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (SNF-159731)

  • Karsten Weis

National Institute of General Medical Sciences (R01GM101257)

  • Karsten Weis

Human Frontier Science Program (LT000914/2015)

  • Maria Hondele

European Molecular Biology Organization (ALTF 290-2014)

  • Stephanie Heinrich

Damon Runyon Cancer Research Foundation

  • Leon Y Chan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alan G Hinnebusch, National Institute of Child Health and Human Development, United States

Version history

  1. Received: June 13, 2016
  2. Accepted: September 28, 2016
  3. Accepted Manuscript published: October 3, 2016 (version 1)
  4. Version of Record published: November 4, 2016 (version 2)

Copyright

© 2016, Mugler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,803
    views
  • 1,290
    downloads
  • 111
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christopher Frederick Mugler
  2. Maria Hondele
  3. Stephanie Heinrich
  4. Ruchika Sachdev
  5. Pascal Vallotton
  6. Adriana Y Koek
  7. Leon Y Chan
  8. Karsten Weis
(2016)
ATPase activity of the DEAD-box protein Dhh1 controls processing body formation
eLife 5:e18746.
https://doi.org/10.7554/eLife.18746

Share this article

https://doi.org/10.7554/eLife.18746

Further reading

    1. Biochemistry and Chemical Biology
    Boglarka Zambo, Evelina Edelweiss ... Gergo Gogl
    Research Article

    Truncation of the protein-protein interaction SH3 domain of the membrane remodeling Bridging Integrator 1 (BIN1, Amphiphysin 2) protein leads to centronuclear myopathy. Here, we assessed the impact of a set of naturally observed, previously uncharacterized BIN1 SH3 domain variants using conventional in vitro and cell-based assays monitoring the BIN1 interaction with dynamin 2 (DNM2) and identified potentially harmful ones that can be also tentatively connected to neuromuscular disorders. However, SH3 domains are typically promiscuous and it is expected that other, so far unknown partners of BIN1 exist besides DNM2, that also participate in the development of centronuclear myopathy. In order to shed light on these other relevant interaction partners and to get a holistic picture of the pathomechanism behind BIN1 SH3 domain variants, we used affinity interactomics. We identified hundreds of new BIN1 interaction partners proteome-wide, among which many appear to participate in cell division, suggesting a critical role of BIN1 in the regulation of mitosis. Finally, we show that the identified BIN1 mutations indeed cause proteome-wide affinity perturbation, signifying the importance of employing unbiased affinity interactomic approaches.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.