Abstract

Overproduced yeast ribosomal protein (RP) Rpl26 fails to assemble into ribosomes and is degraded in the nucleus/nucleolus by a ubiquitin-proteasome system quality control pathway comprising the E2 enzymes Ubc4/Ubc5 and the ubiquitin ligase Tom1. tom1 cells show reduced ubiquitination of multiple RPs, exceptional accumulation of detergent-insoluble proteins including multiple RPs, and hypersensitivity to imbalances in production of RPs and rRNA, indicative of a profound perturbation to proteostasis. Tom1 directly ubiquitinates unassembled RPs primarily via residues that are concealed in mature ribosomes. Together, these data point to an important role for Tom1 in normal physiology and prompt us to refer to this pathway as ERISQ, for excess ribosomal protein quality control. A similar pathway, mediated by the Tom1 homolog Huwe1, restricts accumulation of overexpressed hRpl26 in human cells. We propose that ERISQ is a key element of the quality control machinery that sustains protein homeostasis and cellular fitness in eukaryotes.

Article and author information

Author details

  1. Min-Kyung Sung

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0513-6834
  2. Tanya R Porras-Yakushi

    Proteome Exploration Laboratory, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  3. Justin M Reitsma

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  4. Ferdinand M Huber

    Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  5. Michael J Sweredoski

    Proteome Exploration Laboratory, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  6. André Hoelz

    Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  7. Sonja Hess

    Proteome Exploration Laboratory, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  8. Raymond J Deshaies

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    For correspondence
    deshaies@caltech.edu
    Competing interests
    Raymond J Deshaies, Reviewing Editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3671-9354

Funding

Gordon and Betty Moore Foundation (GBMF775)

  • Tanya R Porras-Yakushi
  • Michael J Sweredoski
  • Sonja Hess

Edward Mallinckrodt (Scholar Award)

  • André Hoelz

Donald E. and Delia B. Baxter Foundation

  • Min-Kyung Sung

National Institutes of Health (1S10RR029594)

  • Sonja Hess

National Institutes of Health (F32GM112308)

  • Justin M Reitsma

Boehringer Ingelheim Fonds

  • Ferdinand M Huber

V Foundation for Cancer Research (Albert Wyrick V Scholar Award)

  • André Hoelz

Sidney Kimmel Foundation for Cancer Research (Scholar Award)

  • André Hoelz

Camille and Henry Dreyfus Foundation (Teacher-Scholar Award)

  • André Hoelz

Howard Hughes Medical Institute

  • Raymond J Deshaies

Beckman Institute, California Institute of Technology

  • Tanya R Porras-Yakushi
  • Michael J Sweredoski
  • Sonja Hess

Heritage Research Institute

  • André Hoelz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Sung et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,741
    views
  • 1,687
    downloads
  • 156
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Min-Kyung Sung
  2. Tanya R Porras-Yakushi
  3. Justin M Reitsma
  4. Ferdinand M Huber
  5. Michael J Sweredoski
  6. André Hoelz
  7. Sonja Hess
  8. Raymond J Deshaies
(2016)
A conserved quality-control pathway that mediates degradation of unassembled ribosomal proteins
eLife 5:e19105.
https://doi.org/10.7554/eLife.19105

Share this article

https://doi.org/10.7554/eLife.19105

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.