Cell culture-based profiling across mammals reveals DNA repair and metabolism as determinants of species longevity

  1. Siming Ma
  2. Akhil Upneja
  3. Andrzej Galecki
  4. Yi-Miau Tsai
  5. Charles F Burant
  6. Sasha Raskind
  7. Quanwei Zhang
  8. Zhengdong D Zhang
  9. Andrei Seluanov
  10. Vera Gorbunova
  11. Clary B Clish
  12. Richard A Miller
  13. Vadim N Gladyshev  Is a corresponding author
  1. Brigham and Women's Hospital, Harvard Medical School, United States
  2. University of Michigan Medical School, United States
  3. Albert Einstein College of Medicine, United States
  4. University of Rochester, United States
  5. Broad Institute, United States

Abstract

Mammalian lifespan differs by >100-fold, but the mechanisms associated with such longevity differences are not understood. Here, we conducted a study on primary skin fibroblasts isolated from 16 species of mammals and maintained under identical cell culture conditions. We developed a pipeline for obtaining species-specific ortholog sequences, profiled gene expression by RNA-seq and small molecules by metabolite profiling, and identified genes and metabolites correlating with species longevity. Cells from longer-lived species up-regulated genes involved in DNA repair and glucose metabolism, down-regulated proteolysis and protein transport, and showed high levels of amino acids but low levels of lysophosphatidylcholine and lysophosphatidylethanolamine. The amino acid patterns were recapitulated by further analyses of primate and bird fibroblasts. The study suggests that fibroblast profiling captures differences in longevity across mammals at the level of global gene expression and metabolite levels and reveals pathways that define these differences.

Article and author information

Author details

  1. Siming Ma

    Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Akhil Upneja

    Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrzej Galecki

    Department of Pathology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yi-Miau Tsai

    Department of Pathology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Charles F Burant

    Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sasha Raskind

    Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Quanwei Zhang

    Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Zhengdong D Zhang

    Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Andrei Seluanov

    Department of Biology, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Vera Gorbunova

    Department of Biology, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Clary B Clish

    Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Richard A Miller

    Department of Pathology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Vadim N Gladyshev

    Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
    For correspondence
    vgladyshev@rics.bwh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0372-7016

Funding

NIH Office of the Director (AG047745)

  • Vadim N Gladyshev

National Institutes of Health (AG047200)

  • Zhengdong D Zhang
  • Andrei Seluanov
  • Vera Gorbunova
  • Vadim N Gladyshev

National Institutes of Health (AG023122)

  • Vadim N Gladyshev

National Institutes of Health (DK089503)

  • Vadim N Gladyshev

National Institutes of Health (DK097153)

  • Vadim N Gladyshev

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Ma et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,497
    views
  • 915
    downloads
  • 69
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Siming Ma
  2. Akhil Upneja
  3. Andrzej Galecki
  4. Yi-Miau Tsai
  5. Charles F Burant
  6. Sasha Raskind
  7. Quanwei Zhang
  8. Zhengdong D Zhang
  9. Andrei Seluanov
  10. Vera Gorbunova
  11. Clary B Clish
  12. Richard A Miller
  13. Vadim N Gladyshev
(2016)
Cell culture-based profiling across mammals reveals DNA repair and metabolism as determinants of species longevity
eLife 5:e19130.
https://doi.org/10.7554/eLife.19130

Share this article

https://doi.org/10.7554/eLife.19130

Further reading

    1. Cell Biology
    Zewei Zhao, Longyun Hu ... Zhonghan Yang
    Research Article

    The induction of adipose thermogenesis plays a critical role in maintaining body temperature and improving metabolic homeostasis to combat obesity. β3-adrenoceptor (β3-AR) is widely recognized as a canonical β-adrenergic G-protein-coupled receptor (GPCR) that plays a crucial role in mediating adipose thermogenesis in mice. Nonetheless, the limited expression of β3-AR in human adipocytes restricts its clinical application. The objective of this study was to identify a GPCR that is highly expressed in human adipocytes and to explore its potential involvement in adipose thermogenesis. Our research findings have demonstrated that the adhesion G-protein-coupled receptor A3 (ADGRA3), an orphan GPCR, plays a significant role in adipose thermogenesis through its constitutively active effects. ADGRA3 exhibited high expression levels in human adipocytes and mouse brown fat. Furthermore, the knockdown of Adgra3 resulted in an exacerbated obese phenotype and a reduction in the expression of thermogenic markers in mice. Conversely, Adgra3 overexpression activated the adipose thermogenic program and improved metabolic homeostasis in mice without exogenous ligand. We found that ADGRA3 facilitates the biogenesis of beige human or mouse adipocytes in vitro. Moreover, hesperetin was identified as a potential agonist of ADGRA3, capable of inducing adipocyte browning and ameliorating insulin resistance in mice. In conclusion, our study demonstrated that the overexpression of constitutively active ADGRA3 or the activation of ADGRA3 by hesperetin can induce adipocyte browning by Gs-PKA-CREB axis. These findings indicate that the utilization of hesperetin and the selective overexpression of ADGRA3 in adipose tissue could serve as promising therapeutic strategies in the fight against obesity.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.