Cell culture-based profiling across mammals reveals DNA repair and metabolism as determinants of species longevity

  1. Siming Ma
  2. Akhil Upneja
  3. Andrzej Galecki
  4. Yi-Miau Tsai
  5. Charles F Burant
  6. Sasha Raskind
  7. Quanwei Zhang
  8. Zhengdong D Zhang
  9. Andrei Seluanov
  10. Vera Gorbunova
  11. Clary B Clish
  12. Richard A Miller
  13. Vadim N Gladyshev  Is a corresponding author
  1. Brigham and Women's Hospital, Harvard Medical School, United States
  2. University of Michigan Medical School, United States
  3. Albert Einstein College of Medicine, United States
  4. University of Rochester, United States
  5. Broad Institute, United States

Abstract

Mammalian lifespan differs by >100-fold, but the mechanisms associated with such longevity differences are not understood. Here, we conducted a study on primary skin fibroblasts isolated from 16 species of mammals and maintained under identical cell culture conditions. We developed a pipeline for obtaining species-specific ortholog sequences, profiled gene expression by RNA-seq and small molecules by metabolite profiling, and identified genes and metabolites correlating with species longevity. Cells from longer-lived species up-regulated genes involved in DNA repair and glucose metabolism, down-regulated proteolysis and protein transport, and showed high levels of amino acids but low levels of lysophosphatidylcholine and lysophosphatidylethanolamine. The amino acid patterns were recapitulated by further analyses of primate and bird fibroblasts. The study suggests that fibroblast profiling captures differences in longevity across mammals at the level of global gene expression and metabolite levels and reveals pathways that define these differences.

Article and author information

Author details

  1. Siming Ma

    Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Akhil Upneja

    Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrzej Galecki

    Department of Pathology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yi-Miau Tsai

    Department of Pathology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Charles F Burant

    Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sasha Raskind

    Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Quanwei Zhang

    Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Zhengdong D Zhang

    Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Andrei Seluanov

    Department of Biology, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Vera Gorbunova

    Department of Biology, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Clary B Clish

    Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Richard A Miller

    Department of Pathology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Vadim N Gladyshev

    Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
    For correspondence
    vgladyshev@rics.bwh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0372-7016

Funding

NIH Office of the Director (AG047745)

  • Vadim N Gladyshev

National Institutes of Health (AG047200)

  • Zhengdong D Zhang
  • Andrei Seluanov
  • Vera Gorbunova
  • Vadim N Gladyshev

National Institutes of Health (AG023122)

  • Vadim N Gladyshev

National Institutes of Health (DK089503)

  • Vadim N Gladyshev

National Institutes of Health (DK097153)

  • Vadim N Gladyshev

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Ma et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,532
    views
  • 917
    downloads
  • 69
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Siming Ma
  2. Akhil Upneja
  3. Andrzej Galecki
  4. Yi-Miau Tsai
  5. Charles F Burant
  6. Sasha Raskind
  7. Quanwei Zhang
  8. Zhengdong D Zhang
  9. Andrei Seluanov
  10. Vera Gorbunova
  11. Clary B Clish
  12. Richard A Miller
  13. Vadim N Gladyshev
(2016)
Cell culture-based profiling across mammals reveals DNA repair and metabolism as determinants of species longevity
eLife 5:e19130.
https://doi.org/10.7554/eLife.19130

Share this article

https://doi.org/10.7554/eLife.19130

Further reading

    1. Cell Biology
    Jingjing Li, Xinyue Wang ... Vincent Archambault
    Research Article

    In animals, mitosis involves the breakdown of the nucleus. The reassembly of a nucleus after mitosis requires the reformation of the nuclear envelope around a single mass of chromosomes. This process requires Ankle2 (also known as LEM4 in humans) which interacts with PP2A and promotes the function of the Barrier-to-Autointegration Factor (BAF). Upon dephosphorylation, BAF dimers cross-bridge chromosomes and bind lamins and transmembrane proteins of the reassembling nuclear envelope. How Ankle2 functions in mitosis is incompletely understood. Using a combination of approaches in Drosophila, along with structural modeling, we provide several lines of evidence that suggest that Ankle2 is a regulatory subunit of PP2A, explaining how it promotes BAF dephosphorylation. In addition, we discovered that Ankle2 interacts with the endoplasmic reticulum protein Vap33, which is required for Ankle2 localization at the reassembling nuclear envelope during telophase. We identified the interaction sites of PP2A and Vap33 on Ankle2. Through genetic rescue experiments, we show that the Ankle2/PP2A interaction is essential for the function of Ankle2 in nuclear reassembly and that the Ankle2/Vap33 interaction also promotes this process. Our study sheds light on the molecular mechanisms of post-mitotic nuclear reassembly and suggests that the endoplasmic reticulum is not merely a source of membranes in the process, but also provides localized enzymatic activity.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bhumil Patel, Maryke Grobler ... Needhi Bhalla
    Research Article

    Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double-strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double-strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2’s conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors and coordinate meiotic recombination with synapsis, ensuring the progressive implementation of meiotic recombination and explaining its function in the pachytene checkpoint and crossover control.