GUY1 confers complete female lethality and is a strong candidate for a male-determining factor in Anopheles stephensi

  1. Frank Criscione
  2. Yumin Qi
  3. Zhijian Jake Tu  Is a corresponding author
  1. Virginia Tech, United States

Abstract

Despite their importance in sexual differentiation and reproduction, Y chromosome genes are rarely described because they reside in repeat-rich regions that are difficult to study. Here, we show that Guy1, a unique Y chromosome gene of a major urban malaria mosquito Anopheles stephensi, confers 100% female lethality when placed on the autosomes. We show that the small GUY1 protein (56 amino acids in length) causes female lethality and that males carrying the transgene are reproductively more competitive than their non-transgenic siblings under laboratory conditions. The GUY1 protein is a primary signal from the Y chromosome that affects embryonic development in a sex-specific manner. Our results have demonstrated, for the first time in mosquitoes, the feasibility of stable transgenic manipulation of sex ratios using an endogenous gene from the male-determining chromosome. These results provide insights into the elusive M factor and suggest exciting opportunities to reduce mosquito populations and disease transmission.

Article and author information

Author details

  1. Frank Criscione

    Department of Biochemistry, Virginia Tech, Blacksburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yumin Qi

    Department of Biochemistry, Virginia Tech, Blacksburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Zhijian Jake Tu

    Department of Biochemistry, Virginia Tech, Blacksburg, United States
    For correspondence
    jaketu@vt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4227-3819

Funding

National Institute of Allergy and Infectious Diseases (AI105575, AI77680, and AI121284)

  • Zhijian Jake Tu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol (#16-067) of Virginia Tech.

Copyright

© 2016, Criscione et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,288
    views
  • 444
    downloads
  • 62
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Frank Criscione
  2. Yumin Qi
  3. Zhijian Jake Tu
(2016)
GUY1 confers complete female lethality and is a strong candidate for a male-determining factor in Anopheles stephensi
eLife 5:e19281.
https://doi.org/10.7554/eLife.19281

Share this article

https://doi.org/10.7554/eLife.19281