The evolutionary origin of bilaterian smooth and striated myocytes

  1. Thibaut Brunet
  2. Antje HL Fischer
  3. Patrick RH Steinmetz
  4. Antonella Lauri
  5. Paola Bertucci
  6. Detlev Arendt  Is a corresponding author
  1. Howard Hughes Medical Institute, University of California, Berkeley, United States
  2. Ludwig-Maximilians University Munich, Germany
  3. University of Bergen, Norway
  4. Helmholtz Zentrum München, Germany
  5. European Molecular Biology Laboratory, Germany

Abstract

The dichotomy between smooth and striated myocytes is fundamental for bilaterian musculature, but its evolutionary origin is unsolved. In particular, interrelationships of visceral smooth muscles remain unclear. Absent in fly and nematode, they have not yet been characterized molecularly outside vertebrates. Here, we characterize expression profile, ultrastructure, contractility and innervation of the musculature in the marine annelid Platynereis dumerilii and identify smooth muscles around the midgut, hindgut and heart that resemble their vertebrate counterparts in molecular fingerprint, contraction speed, and nervous control. Our data suggest that both visceral smooth and somatic striated myocytes were present in the protostome-deuterostome ancestor, and that smooth myocytes later co-opted the striated contractile module repeatedly - for example in vertebrate heart evolution. During these smooth-to-striated myocyte conversions the core regulatory complex of transcription factors conveying myocyte identity remained unchanged, reflecting a general principle in cell type evolution.

Article and author information

Author details

  1. Thibaut Brunet

    Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1843-1613
  2. Antje HL Fischer

    Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1843-1613
  3. Patrick RH Steinmetz

    Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  4. Antonella Lauri

    Institute for Biological and Medical Imaging, Helmholtz Zentrum München, München, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Paola Bertucci

    Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Detlev Arendt

    Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    For correspondence
    arendt@embl.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7833-050X

Funding

European Research Council (Brain Evo-Devo)

  • Thibaut Brunet
  • Paola Bertucci
  • Detlev Arendt

European Union's Seventh Framework Program (EVONET)

  • Antonella Lauri

European Union-Marie Curie Early Training Network (ZOONET)

  • Antje HL Fischer

European Molecular Biology Laboratory (International PhD Program)

  • Thibaut Brunet
  • Antje HL Fischer
  • Patrick RH Steinmetz
  • Antonella Lauri

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alejandro Sánchez Alvarado, Stowers Institute for Medical Research, United States

Version history

  1. Received: August 24, 2016
  2. Accepted: December 1, 2016
  3. Accepted Manuscript published: December 1, 2016 (version 1)
  4. Accepted Manuscript updated: December 2, 2016 (version 2)
  5. Version of Record published: December 19, 2016 (version 3)

Copyright

© 2016, Brunet et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,923
    views
  • 968
    downloads
  • 83
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thibaut Brunet
  2. Antje HL Fischer
  3. Patrick RH Steinmetz
  4. Antonella Lauri
  5. Paola Bertucci
  6. Detlev Arendt
(2016)
The evolutionary origin of bilaterian smooth and striated myocytes
eLife 5:e19607.
https://doi.org/10.7554/eLife.19607

Share this article

https://doi.org/10.7554/eLife.19607

Further reading

    1. Developmental Biology
    Ruonan Zhao, Emma L Moore ... Paul A Trainor
    Research Article

    Epithelial to mesenchymal transition (EMT) is a cellular process that converts epithelial cells to mesenchymal cells with migratory potential in developmental and pathological processes. Although originally considered a binary event, EMT in cancer progression involves intermediate states between a fully epithelial and a fully mesenchymal phenotype, which are characterized by distinct combinations of epithelial and mesenchymal markers. This phenomenon has been termed epithelial to mesenchymal plasticity (EMP), however, the intermediate states remain poorly described and it’s unclear whether they exist during developmental EMT. Neural crest cells (NCC) are an embryonic progenitor cell population that gives rise to numerous cell types and tissues in vertebrates, and their formation and delamination is a classic example of developmental EMT. However, whether intermediate states also exist during NCC EMT and delamination remains unknown. Through single-cell RNA sequencing of mouse embryos, we identified intermediate NCC states based on their transcriptional signature and then spatially defined their locations in situ in the dorsolateral neuroepithelium. Our results illustrate the importance of cell cycle regulation and functional role for the intermediate stage marker Dlc1 in facilitating mammalian cranial NCC delamination and may provide new insights into mechanisms regulating pathological EMP.

    1. Developmental Biology
    Thierry Gilbert, Camille Gorlt ... Andreas Merdes
    Research Article Updated

    Ninein is a centrosome protein that has been implicated in microtubule anchorage and centrosome cohesion. Mutations in the human NINEIN gene have been linked to Seckel syndrome and to a rare form of skeletal dysplasia. However, the role of ninein in skeletal development remains unknown. Here, we describe a ninein knockout mouse with advanced endochondral ossification during embryonic development. Although the long bones maintain a regular size, the absence of ninein delays the formation of the bone marrow cavity in the prenatal tibia. Likewise, intramembranous ossification in the skull is more developed, leading to a premature closure of the interfrontal suture. We demonstrate that ninein is strongly expressed in osteoclasts of control mice, and that its absence reduces the fusion of precursor cells into syncytial osteoclasts, whereas the number of osteoblasts remains unaffected. As a consequence, ninein-deficient osteoclasts have a reduced capacity to resorb bone. At the cellular level, the absence of ninein interferes with centrosomal microtubule organization, reduces centrosome cohesion, and provokes the loss of centrosome clustering in multinucleated mature osteoclasts. We propose that centrosomal ninein is important for osteoclast fusion, to enable a functional balance between bone-forming osteoblasts and bone-resorbing osteoclasts during skeletal development.