The evolutionary origin of bilaterian smooth and striated myocytes

  1. Thibaut Brunet
  2. Antje HL Fischer
  3. Patrick RH Steinmetz
  4. Antonella Lauri
  5. Paola Bertucci
  6. Detlev Arendt  Is a corresponding author
  1. Howard Hughes Medical Institute, University of California, Berkeley, United States
  2. Ludwig-Maximilians University Munich, Germany
  3. University of Bergen, Norway
  4. Helmholtz Zentrum München, Germany
  5. European Molecular Biology Laboratory, Germany

Abstract

The dichotomy between smooth and striated myocytes is fundamental for bilaterian musculature, but its evolutionary origin is unsolved. In particular, interrelationships of visceral smooth muscles remain unclear. Absent in fly and nematode, they have not yet been characterized molecularly outside vertebrates. Here, we characterize expression profile, ultrastructure, contractility and innervation of the musculature in the marine annelid Platynereis dumerilii and identify smooth muscles around the midgut, hindgut and heart that resemble their vertebrate counterparts in molecular fingerprint, contraction speed, and nervous control. Our data suggest that both visceral smooth and somatic striated myocytes were present in the protostome-deuterostome ancestor, and that smooth myocytes later co-opted the striated contractile module repeatedly - for example in vertebrate heart evolution. During these smooth-to-striated myocyte conversions the core regulatory complex of transcription factors conveying myocyte identity remained unchanged, reflecting a general principle in cell type evolution.

Article and author information

Author details

  1. Thibaut Brunet

    Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1843-1613
  2. Antje HL Fischer

    Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Patrick RH Steinmetz

    Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  4. Antonella Lauri

    Institute for Biological and Medical Imaging, Helmholtz Zentrum München, München, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Paola Bertucci

    Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Detlev Arendt

    Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    For correspondence
    arendt@embl.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7833-050X

Funding

European Research Council (Brain Evo-Devo)

  • Thibaut Brunet
  • Paola Bertucci
  • Detlev Arendt

European Union's Seventh Framework Program (EVONET)

  • Antonella Lauri

European Union-Marie Curie Early Training Network (ZOONET)

  • Antje HL Fischer

European Molecular Biology Laboratory (International PhD Program)

  • Thibaut Brunet
  • Antje HL Fischer
  • Patrick RH Steinmetz
  • Antonella Lauri

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alejandro Sánchez Alvarado, Stowers Institute for Medical Research, United States

Publication history

  1. Received: July 13, 2016
  2. Accepted: December 1, 2016
  3. Accepted Manuscript published: December 1, 2016 (version 1)
  4. Accepted Manuscript updated: December 2, 2016 (version 2)
  5. Version of Record published: December 19, 2016 (version 3)

Copyright

© 2016, Brunet et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,497
    Page views
  • 825
    Downloads
  • 43
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thibaut Brunet
  2. Antje HL Fischer
  3. Patrick RH Steinmetz
  4. Antonella Lauri
  5. Paola Bertucci
  6. Detlev Arendt
(2016)
The evolutionary origin of bilaterian smooth and striated myocytes
eLife 5:e19607.
https://doi.org/10.7554/eLife.19607

Further reading

    1. Cell Biology
    2. Developmental Biology
    Ivonne Margarete Sehring et al.
    Research Article

    Successful regeneration requires the coordinated execution of multiple cellular responses to injury. In amputated zebrafish fins, mature osteoblasts dedifferentiate, migrate towards the injury and form proliferative osteogenic blastema cells. We show that osteoblast migration is preceded by cell elongation and alignment along the proximodistal axis, which require actomyosin, but not microtubule turnover. Surprisingly, osteoblast dedifferentiation and migration can be uncoupled. Using pharmacological and genetic interventions, we found that NF-ĸB and retinoic acid signalling regulate dedifferentiation without affecting migration, while the complement system and actomyosin dynamics affect migration but not dedifferentiation. Furthermore, by removing bone at two locations within a fin ray, we established an injury model containing two injury sites. We found that osteoblasts dedifferentiate at and migrate towards both sites, while accumulation of osteogenic progenitor cells and regenerative bone formation only occur at the distal-facing injury. Together, these data indicate that osteoblast dedifferentiation and migration represent generic injury responses that are differentially regulated and can occur independently of each other and of regenerative growth. We conclude that successful fin bone regeneration appears to involve the coordinated execution of generic and regeneration-specific responses of osteoblasts to injury.

    1. Developmental Biology
    2. Neuroscience
    Ashtyn T Wiltbank et al.
    Research Article

    Efficient neurotransmission is essential for organism survival and is enhanced by myelination. However, the genes that regulate myelin and myelinating glial cell development have not been fully characterized. Data from our lab and others demonstrates that cd59, which encodes for a small GPI-anchored glycoprotein, is highly expressed in developing zebrafish, rodent, and human oligodendrocytes (OLs) and Schwann cells (SCs), and that patients with CD59 dysfunction develop neurological dysfunction during early childhood. Yet, the function of Cd59 in the developing nervous system is currently undefined. In this study, we demonstrate that cd59 is expressed in a subset of developing SCs. Using cd59 mutant zebrafish, we show that developing SCs proliferate excessively and nerves may have reduced myelin volume, altered myelin ultrastructure, and perturbed node of Ranvier assembly. Finally, we demonstrate that complement activity is elevated in cd59 mutants and that inhibiting inflammation restores SC proliferation, myelin volume, and nodes of Ranvier to wildtype levels. Together, this work identifies Cd59 and developmental inflammation as key players in myelinating glial cell development, highlighting the collaboration between glia and the innate immune system to ensure normal neural development.