A saturation hypothesis to explain both enhanced and impaired learning with enhanced plasticity

Abstract

Across many studies, animals with enhanced synaptic plasticity exhibit either enhanced or impaired learning, raising a conceptual puzzle: how enhanced plasticity can yield opposite learning outcomes? Here we show that recent history of experience can determine whether mice with enhanced plasticity exhibit enhanced or impaired learning in response to the same training. Mice with enhanced cerebellar LTD, due to double knockout (DKO) of MHCI H2-Kb/H2-Db (KbDb-/-), exhibited oculomotor learning deficits. However, the same mice exhibited enhanced learning after appropriate pre-training. Theoretical analysis revealed that synapses with history-dependent learning rules could recapitulate the data, and suggested that saturation may be a key factor limiting the ability of enhanced plasticity to enhance learning. Moreover, optogenetic stimulation designed to saturate LTD produced the same impairment in WT as observed in DKO mice. Overall, our results suggest that recent history of activity and the threshold for synaptic plasticity conspire to effect divergent learning outcomes.

Article and author information

Author details

  1. TD Barbara Nguyen-Vu

    Department of Neurobiology, Stanford School of Medicine, Stanford, United States
    For correspondence
    ngbabs@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4708-1982
  2. Grace Q Zhao

    Department of Neurobiology, Stanford School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  3. Subhaneil Lahiri

    Department of Neurobiology, Stanford School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2028-6635
  4. Rhea R Kimpo

    Department of Neurobiology, Stanford School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  5. Hanmi Lee

    Department of Neurobiology, Stanford School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  6. Surya Ganguli

    Department of Neurobiology, Stanford School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  7. Carla J Shatz

    Department of Neurobiology, Stanford School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  8. Jennifer L Raymond

    Department of Neurobiology, Stanford School of Medicine, Stanford, United States
    For correspondence
    jenr@stanford.edu
    Competing interests
    Jennifer L Raymond, Reviewing editor, eLife.

Funding

National Institutes of Health (RO1DC04154,RO1NS072406,R21NS057488,P30DC10363)

  • Jennifer L Raymond

National Science Foundation (Graduate Research Fellowship)

  • TD Barbara Nguyen-Vu

Burroughs Wellcome Fund

  • Surya Ganguli

Genentech Foundation

  • Hanmi Lee

James S. McDonnell Foundation

  • Jennifer L Raymond

National Institutes of Health (F31DC010547)

  • TD Barbara Nguyen-Vu

National Institutes of Health (F32NS058060)

  • Grace Q Zhao

National Institutes of Health (RO1MH07166)

  • Carla J Shatz

National Institutes of Health (NS069375)

  • Jennifer L Raymond

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mark CW van Rossum, University of Edinburgh, United Kingdom

Ethics

Animal experimentation: All experimental procedures were approved by the Administrative Panel on Laboratory Animal Care at Stanford University under animal care and use committee (IACUC) Protocol #9143, titled 'Vestibular and Visual Control of Eye Movements in Mice'.

Version history

  1. Received: July 29, 2016
  2. Accepted: February 2, 2017
  3. Accepted Manuscript published: February 24, 2017 (version 1)
  4. Version of Record published: April 10, 2017 (version 2)

Copyright

© 2017, Nguyen-Vu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,153
    views
  • 608
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. TD Barbara Nguyen-Vu
  2. Grace Q Zhao
  3. Subhaneil Lahiri
  4. Rhea R Kimpo
  5. Hanmi Lee
  6. Surya Ganguli
  7. Carla J Shatz
  8. Jennifer L Raymond
(2017)
A saturation hypothesis to explain both enhanced and impaired learning with enhanced plasticity
eLife 6:e20147.
https://doi.org/10.7554/eLife.20147

Share this article

https://doi.org/10.7554/eLife.20147

Further reading

    1. Neuroscience
    Silvia Cardani, Tara A Janes ... Silvia Pagliardini
    Research Article

    PHOX2B is a transcription factor essential for the development of different classes of neurons in the central and peripheral nervous system. Heterozygous mutations in the PHOX2B coding region are responsible for the occurrence of Congenital Central Hypoventilation Syndrome (CCHS), a rare neurological disorder characterised by inadequate chemosensitivity and life-threatening sleep-related hypoventilation. Animal studies suggest that chemoreflex defects are caused in part by the improper development or function of PHOX2B expressing neurons in the retrotrapezoid nucleus (RTN), a central hub for CO2 chemosensitivity. Although the function of PHOX2B in rodents during development is well established, its role in the adult respiratory network remains unknown. In this study, we investigated whether reduction in PHOX2B expression in chemosensitive neuromedin-B (NMB) expressing neurons in the RTN altered respiratory function. Four weeks following local RTN injection of a lentiviral vector expressing the short hairpin RNA (shRNA) targeting Phox2b mRNA, a reduction of PHOX2B expression was observed in Nmb neurons compared to both naive rats and rats injected with the non-target shRNA. PHOX2B knockdown did not affect breathing in room air or under hypoxia, but ventilation was significantly impaired during hypercapnia. PHOX2B knockdown did not alter Nmb expression but it was associated with reduced expression of both Task2 and Gpr4, two CO2/pH sensors in the RTN. We conclude that PHOX2B in the adult brain has an important role in CO2 chemoreception and reduced PHOX2B expression in CCHS beyond the developmental period may contribute to the impaired central chemoreflex function.

    1. Neuroscience
    Aedan Yue Li, Natalia Ladyka-Wojcik ... Morgan D Barense
    Research Article Updated

    Combining information from multiple senses is essential to object recognition, core to the ability to learn concepts, make new inferences, and generalize across distinct entities. Yet how the mind combines sensory input into coherent crossmodal representations – the crossmodal binding problem – remains poorly understood. Here, we applied multi-echo fMRI across a 4-day paradigm, in which participants learned three-dimensional crossmodal representations created from well-characterized unimodal visual shape and sound features. Our novel paradigm decoupled the learned crossmodal object representations from their baseline unimodal shapes and sounds, thus allowing us to track the emergence of crossmodal object representations as they were learned by healthy adults. Critically, we found that two anterior temporal lobe structures – temporal pole and perirhinal cortex – differentiated learned from non-learned crossmodal objects, even when controlling for the unimodal features that composed those objects. These results provide evidence for integrated crossmodal object representations in the anterior temporal lobes that were different from the representations for the unimodal features. Furthermore, we found that perirhinal cortex representations were by default biased toward visual shape, but this initial visual bias was attenuated by crossmodal learning. Thus, crossmodal learning transformed perirhinal representations such that they were no longer predominantly grounded in the visual modality, which may be a mechanism by which object concepts gain their abstraction.