A saturation hypothesis to explain both enhanced and impaired learning with enhanced plasticity

Abstract

Across many studies, animals with enhanced synaptic plasticity exhibit either enhanced or impaired learning, raising a conceptual puzzle: how enhanced plasticity can yield opposite learning outcomes? Here we show that recent history of experience can determine whether mice with enhanced plasticity exhibit enhanced or impaired learning in response to the same training. Mice with enhanced cerebellar LTD, due to double knockout (DKO) of MHCI H2-Kb/H2-Db (KbDb-/-), exhibited oculomotor learning deficits. However, the same mice exhibited enhanced learning after appropriate pre-training. Theoretical analysis revealed that synapses with history-dependent learning rules could recapitulate the data, and suggested that saturation may be a key factor limiting the ability of enhanced plasticity to enhance learning. Moreover, optogenetic stimulation designed to saturate LTD produced the same impairment in WT as observed in DKO mice. Overall, our results suggest that recent history of activity and the threshold for synaptic plasticity conspire to effect divergent learning outcomes.

Article and author information

Author details

  1. TD Barbara Nguyen-Vu

    Department of Neurobiology, Stanford School of Medicine, Stanford, United States
    For correspondence
    ngbabs@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4708-1982
  2. Grace Q Zhao

    Department of Neurobiology, Stanford School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  3. Subhaneil Lahiri

    Department of Neurobiology, Stanford School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2028-6635
  4. Rhea R Kimpo

    Department of Neurobiology, Stanford School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  5. Hanmi Lee

    Department of Neurobiology, Stanford School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  6. Surya Ganguli

    Department of Neurobiology, Stanford School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  7. Carla J Shatz

    Department of Neurobiology, Stanford School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  8. Jennifer L Raymond

    Department of Neurobiology, Stanford School of Medicine, Stanford, United States
    For correspondence
    jenr@stanford.edu
    Competing interests
    Jennifer L Raymond, Reviewing editor, eLife.

Funding

National Institutes of Health (RO1DC04154,RO1NS072406,R21NS057488,P30DC10363)

  • Jennifer L Raymond

National Science Foundation (Graduate Research Fellowship)

  • TD Barbara Nguyen-Vu

Burroughs Wellcome Fund

  • Surya Ganguli

Genentech Foundation

  • Hanmi Lee

James S. McDonnell Foundation

  • Jennifer L Raymond

National Institutes of Health (F31DC010547)

  • TD Barbara Nguyen-Vu

National Institutes of Health (F32NS058060)

  • Grace Q Zhao

National Institutes of Health (RO1MH07166)

  • Carla J Shatz

National Institutes of Health (NS069375)

  • Jennifer L Raymond

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were approved by the Administrative Panel on Laboratory Animal Care at Stanford University under animal care and use committee (IACUC) Protocol #9143, titled 'Vestibular and Visual Control of Eye Movements in Mice'.

Copyright

© 2017, Nguyen-Vu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,251
    views
  • 619
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. TD Barbara Nguyen-Vu
  2. Grace Q Zhao
  3. Subhaneil Lahiri
  4. Rhea R Kimpo
  5. Hanmi Lee
  6. Surya Ganguli
  7. Carla J Shatz
  8. Jennifer L Raymond
(2017)
A saturation hypothesis to explain both enhanced and impaired learning with enhanced plasticity
eLife 6:e20147.
https://doi.org/10.7554/eLife.20147

Share this article

https://doi.org/10.7554/eLife.20147

Further reading

    1. Neuroscience
    Hannah Bos, Christoph Miehl ... Brent Doiron
    Research Article

    Synaptic inhibition is the mechanistic backbone of a suite of cortical functions, not the least of which are maintaining network stability and modulating neuronal gain. In cortical models with a single inhibitory neuron class, network stabilization and gain control work in opposition to one another – meaning high gain coincides with low stability and vice versa. It is now clear that cortical inhibition is diverse, with molecularly distinguished cell classes having distinct positions within the cortical circuit. We analyze circuit models with pyramidal neurons (E) as well as parvalbumin (PV) and somatostatin (SOM) expressing interneurons. We show how, in E – PV – SOM recurrently connected networks, SOM-mediated modulation can lead to simultaneous increases in neuronal gain and network stability. Our work exposes how the impact of a modulation mediated by SOM neurons depends critically on circuit connectivity and the network state.

    1. Immunology and Inflammation
    2. Neuroscience
    Jeremy M Shea, Saul A Villeda
    Research Article

    During aging, microglia – the resident macrophages of the brain – exhibit altered phenotypes and contribute to age-related neuroinflammation. While numerous hallmarks of age-related microglia have been elucidated, the progression from homeostasis to dysfunction during the aging process remains unresolved. To bridge this gap in knowledge, we undertook complementary cellular and molecular analyses of microglia in the mouse hippocampus across the adult lifespan and in the experimental aging model of heterochronic parabiosis. Single-cell RNA-Seq and pseudotime analysis revealed age-related transcriptional heterogeneity in hippocampal microglia and identified intermediate states of microglial aging that also emerge following heterochronic parabiosis. We tested the functionality of intermediate stress response states via TGFβ1 and translational states using pharmacological approaches in vitro to reveal their modulation of the progression to an activated state. Furthermore, we utilized single-cell RNA-Seq in conjunction with in vivo adult microglia-specific Tgfb1 conditional genetic knockout mouse models to demonstrate that microglia advancement through intermediate aging states drives transcriptional inflammatory activation and hippocampal-dependent cognitive decline.