Structure of the active form of human Origin Recognition Complex and its ATPase motor module

  1. Ante Tocilj
  2. Kin Fan On
  3. Zuanning Yuan
  4. Jingchuan Sun
  5. Elad Elkayam
  6. Huilin Li
  7. Bruce Stillman  Is a corresponding author
  8. Leemor Joshua-Tor  Is a corresponding author
  1. Cold Spring Harbor Laboratory, United States
  2. Cold Spring Harbor Laboratory/HHMI, United States
  3. Brookhaven National Laboratory/Stony Brook University, United States
  4. Brookhaven National Laboratory, United States
  5. Van Andel Research Institute, United States

Abstract

Binding of the Origin Recognition Complex (ORC) to origins of replication marks the first step in the initiation of replication of the genome in all eukaryotic cells. Here, we report the structure of the active form of human ORC determined by X-ray crystallography and cryo-electron microscopy. The complex is composed of an ORC1/4/5 motor module lobe in an organization reminiscent of the DNA polymerase clamp loader complexes. A second lobe contains the ORC2/3 subunits. The complex is organized as a double-layered shallow corkscrew, with the AAA+ and AAA+-like domains forming one layer, and the winged-helix domains (WHDs) forming a top layer. CDC6 fits easily between ORC1 and ORC2, completing the ring and the DNA-binding channel, forming an additional ATP hydrolysis site. Analysis of the ATPase activity of the complex provides a basis for understanding ORC activity as well as molecular defects observed in Meier-Gorlin Syndrome mutations.

Article and author information

Author details

  1. Ante Tocilj

    Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kin Fan On

    Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory/HHMI, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Zuanning Yuan

    Biology Department, Brookhaven National Laboratory/Stony Brook University, Upton/Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jingchuan Sun

    Biology Department, Brookhaven National Laboratory, Upton, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Elad Elkayam

    Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory/HHMI, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Huilin Li

    H. Li Lab, Van Andel Research Institute, Grand Rapids, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Bruce Stillman

    Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    For correspondence
    stillman@cshl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9453-4091
  8. Leemor Joshua-Tor

    Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory/HHMI, Cold Spring Harbor, United States
    For correspondence
    leemor@cshl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8185-8049

Funding

Howard Hughes Medical Institute

  • Ante Tocilj

National Institute of General Medical Sciences (GM45436)

  • Bruce Stillman

National Cancer Institute (PO1-CA13016)

  • Bruce Stillman

National Institute of General Medical Sciences (GM111742)

  • Huilin Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Tocilj et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,195
    views
  • 899
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ante Tocilj
  2. Kin Fan On
  3. Zuanning Yuan
  4. Jingchuan Sun
  5. Elad Elkayam
  6. Huilin Li
  7. Bruce Stillman
  8. Leemor Joshua-Tor
(2017)
Structure of the active form of human Origin Recognition Complex and its ATPase motor module
eLife 6:e20818.
https://doi.org/10.7554/eLife.20818

Share this article

https://doi.org/10.7554/eLife.20818

Further reading

    1. Structural Biology and Molecular Biophysics
    Yuanyuan Wang, Fan Xu ... Yongning He
    Research Article

    SCARF1 (scavenger receptor class F member 1, SREC-1 or SR-F1) is a type I transmembrane protein that recognizes multiple endogenous and exogenous ligands such as modified low-density lipoproteins (LDLs) and is important for maintaining homeostasis and immunity. But the structural information and the mechanisms of ligand recognition of SCARF1 are largely unavailable. Here, we solve the crystal structures of the N-terminal fragments of human SCARF1, which show that SCARF1 forms homodimers and its epidermal growth factor (EGF)-like domains adopt a long-curved conformation. Then, we examine the interactions of SCARF1 with lipoproteins and are able to identify a region on SCARF1 for recognizing modified LDLs. The mutagenesis data show that the positively charged residues in the region are crucial for the interaction of SCARF1 with modified LDLs, which is confirmed by making chimeric molecules of SCARF1 and SCARF2. In addition, teichoic acids, a cell wall polymer expressed on the surface of gram-positive bacteria, are able to inhibit the interactions of modified LDLs with SCARF1, suggesting the ligand binding sites of SCARF1 might be shared for some of its scavenging targets. Overall, these results provide mechanistic insights into SCARF1 and its interactions with the ligands, which are important for understanding its physiological roles in homeostasis and the related diseases.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.