Phenotypic outcomes in Mouse and Human Foxc1 dependent Dandy-Walker cerebellar malformation suggest shared mechanisms

  1. Parthiv Haldipur
  2. Derek Dang
  3. Kimberly A Aldinger
  4. Olivia K Janson
  5. Fabien Guimiot
  6. Homa Adle-Biasette
  7. William B Dobyns
  8. Joseph R Siebert
  9. Rosa Russo
  10. Kathleen J Millen  Is a corresponding author
  1. Seattle Children's Research Institute, United States
  2. SCRI, United States
  3. Seattle Chidren's Research Institute, United States
  4. INSERM UMR 1141, France
  5. Seattle Children's Hospital, United States
  6. S. Giovanni di Dio e Ruggi D'Aragona, Italy

Abstract

FOXC1 loss contributes to Dandy-Walker malformation (DWM), a common human cerebellar malformation.  Previously we found that complete Foxc1 loss leads to aberrations in proliferation, neuronal differentiation and migration in the embryonic mouse cerebellum (Haldipur et al., 2014). We now demonstrate that hypomorphic Foxc1 mutant mice have granule and Purkinje cell abnormalities causing subsequent disruptions in postnatal cerebellar foliation and lamination. Particularly striking is the presence of a partially formed posterior lobule echoing the posterior vermis DW "tail sign" observed in human imaging studies. Lineage tracing experiments in Foxc1 mutant mouse cerebella indicate aberrant migration of granule cell progenitors destined to form the posterior-most lobule causes this unique phenotype. Analyses of rare human del chr 6p25 fetal cerebella demonstrate extensive phenotypic overlap with our Foxc1 mutant mouse models, validating our DWM models and demonstrating that many key mechanisms controlling cerebellar development are likely conserved between mouse and human.

Article and author information

Author details

  1. Parthiv Haldipur

    Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Derek Dang

    CIBR, SCRI, SEATTLE, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kimberly A Aldinger

    CIBR, SCRI, SEATTLE, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Olivia K Janson

    Center for Integrative Brain Research, Seattle Chidren's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Fabien Guimiot

    Hôpital Robert-Debré, INSERM UMR 1141, PARIS, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Homa Adle-Biasette

    Hôpital Robert-Debré, INSERM UMR 1141, PARIS, France
    Competing interests
    The authors declare that no competing interests exist.
  7. William B Dobyns

    CIBR, SCRI, SEATTLE, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Joseph R Siebert

    pathology, Seattle Children's Hospital, seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Rosa Russo

    University Medical College, S. Giovanni di Dio e Ruggi D'Aragona, Salerno, Italy
    Competing interests
    The authors declare that no competing interests exist.
  10. Kathleen J Millen

    Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
    For correspondence
    kathleen.millen@seattlechildrens.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9978-675X

Funding

National Institutes of Health (R01NS072441)

  • Kathleen J Millen

National Institutes of Health (R01NS080390)

  • Kathleen J Millen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experimentation for this study was approved by the Institutional Animal Care and Use Committee (IACUC Protocol no 14208), of Seattle Children's Research Institute, Seattle, WA, USA..

Human subjects: All human studies were approved by Institutional Review Boards at all participating institutions. Written informed consent was obtained from all subjects.

Copyright

© 2017, Haldipur et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,671
    views
  • 292
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Parthiv Haldipur
  2. Derek Dang
  3. Kimberly A Aldinger
  4. Olivia K Janson
  5. Fabien Guimiot
  6. Homa Adle-Biasette
  7. William B Dobyns
  8. Joseph R Siebert
  9. Rosa Russo
  10. Kathleen J Millen
(2017)
Phenotypic outcomes in Mouse and Human Foxc1 dependent Dandy-Walker cerebellar malformation suggest shared mechanisms
eLife 6:e20898.
https://doi.org/10.7554/eLife.20898

Share this article

https://doi.org/10.7554/eLife.20898

Further reading

    1. Developmental Biology
    Jing Lu, Hao Xu ... Kai Lei
    Tools and Resources

    The intricate coordination of the neural network in planarian growth and regeneration has remained largely unrevealed, partly due to the challenges of imaging the CNS in three dimensions (3D) with high resolution and within a reasonable timeframe. To address this gap in systematic imaging of the CNS in planarians, we adopted high-resolution, nanoscale imaging by combining tissue expansion and tiling light-sheet microscopy, achieving up to fourfold linear expansion. Using an automatic 3D cell segmentation pipeline, we quantitatively profiled neurons and muscle fibers at the single-cell level in over 400 wild-type planarians during homeostasis and regeneration. We validated previous observations of neuronal cell number changes and muscle fiber distribution. We found that the increase in neuron cell number tends to lag behind the rapid expansion of somatic cells during the later phase of homeostasis. By imaging the planarian with up to 120 nm resolution, we also observed distinct muscle distribution patterns at the anterior and posterior poles. Furthermore, we investigated the effects of β-catenin-1 RNAi on muscle fiber distribution at the posterior pole, consistent with changes in anterior-posterior polarity. The glial cells were observed to be close in contact with dorsal-ventral muscle fibers. Finally, we observed disruptions in neural-muscular networks in inr-1 RNAi planarians. These findings provide insights into the detailed structure and potential functions of the neural-muscular system in planarians and highlight the accessibility of our imaging tool in unraveling the biological functions underlying their diverse phenotypes and behaviors.

    1. Developmental Biology
    2. Genetics and Genomics
    Menglei Yang, Hafiz Muhammad Jafar Hussain ... Baolu Shi
    Research Article

    Asthenoteratozoospermia, a prevalent cause of male infertility, lacks a well-defined etiology. DNAH12 is a special dynein featured by the absence of a microtubule-binding domain, however, its functions in spermatogenesis remain largely unknown. Through comprehensive genetic analyses involving whole-exome sequencing and subsequent Sanger sequencing on infertile patients and fertile controls from six distinct families, we unveiled six biallelic mutations in DNAH12 that co-segregate recessively with male infertility in the studied families. Transmission electron microscopy (TEM) revealed pronounced axonemal abnormalities, including inner dynein arms (IDAs) impairment and central pair (CP) loss in sperm flagella of the patients. Mouse models (Dnah12-/- and Dnah12mut/mut) were generated and recapitulated the reproductive defects in the patients. Noteworthy, DNAH12 deficiency did not show effects on cilium organization and function. Mechanistically, DNAH12 was confirmed to interact with two other IDA components DNALI1 and DNAH1, while disruption of DNAH12 leads to failed recruitment of DNALI1 and DNAH1 to IDAs and compromised sperm development. Furthermore, DNAH12 also interacts with radial spoke head proteins RSPH1, RSPH9, and DNAJB13 to regulate CP stability. Moreover, the infertility of Dnah12-/- mice could be overcome by intracytoplasmic sperm injection (ICSI) treatment. Collectively, DNAH12 plays a crucial role in the proper organization of axoneme in sperm flagella, but not cilia, by recruiting DNAH1 and DNALI1 in both humans and mice. These findings expand our comprehension of dynein component assembly in flagella and cilia and provide a valuable marker for genetic counseling and diagnosis of asthenoteratozoospermia in clinical practice.