1. Raghav K Chhetri  Is a corresponding author
  2. Philipp J Keller  Is a corresponding author
  1. HHMI Janelia Research Campus, United States

The idea of a microscope typically conjures up thoughts of a highly magnified image of a tiny sample captured in unprecedented detail. In principle, however, the physical mechanisms that allow us to see such microscopic details do not actually require the observed region or the specimen itself to be particularly small. Rather, the performance of a microscope is primarily limited by the diffraction of light as it passes through the various optical elements in the instrument.

The resolution of a microscope, d, is defined as the shortest distance between two points on a specimen that can still be seen as two distinct points in the image. In 1873 Ernst Abbe showed that diffraction limited the resolution of a microscope to d=λ2nsinα, where λ is the wavelength of the light, n is the refractive index of the medium the light travels through, and α is the half-angle at which the objective captures light from the sample: nsinα is also known as the "numerical aperture" of the objective.

As Abbe's equation makes clear, the resolution is independent of the magnification. Rather, it is the design of the objective that determines both the resolution of the microscope and its "field-of-view" (that is, the overall size of the sample that can be imaged). And although a variety of microscope objectives are available from commercial manufacturers, they are designed to either capture a fairly large field-of-view (typically a millimeter or so across) at low resolution, or a small field-of-view (typically a few hundred micrometers or less across) at high resolution. By contrast, to obtain a high-resolution image of a large specimen we need a combination of a large field-of-view, a long working distance (that is, the distance between the objective and the focal plane of the microscope), and a high numerical aperture: however, there are no commercial microscopes that offer this combination at present.

Now, in eLife, Gail McConnell of Strathclyde University and colleagues – Johanna Trägårdh, Rumelo Amor, John Dempster, Es Reid and Brad Amos (who is also at the MRC Laboratory for Molecular Biology) – report that they have developed an objective called the Mesolens that offers both a relatively large field-of-view and a relatively high resolution (Figure 1; McConnell et al., 2016). Using a custom-built confocal microscope equipped with the Mesolens, McConnell et al. were able to capture beautiful single-shot images of whole mouse embryos with cellular resolution, and also capture images of explants from the brains of rat embryos, again with cellular resolution.

Imaging large samples with cellular resolution.

The Mesolens microscope (left) contains a scanning system with two large beryllium mirrors (top; the mirror on the right can be seen side-on), a scan lens (black and silver cylinders), the Mesolens (two black cylinders, black cube and lower black cylinder), and a stage system to translate and focus the specimen (at the base). The Mesolens (which is 550 mm in length) is an immersion lens, and matching the immersion medium to the optical properties of the specimen greatly reduces spherical aberration, which is a common problem in light microscopy. The Mesolens design also incorporates corrections for both flat-field and chromatic aberration over a range of wavelengths. Image of a 12.5 day old mouse embryo (right); the field-of-view is 5 mm for the main image, and 0.46 mm for the inset; see Figure 5 of McConnell et al. for more details. Images courtesy of David Blatchford (left) and Johanna Trägårdh (right).

The Mesolens was made possible by a combination of sophisticated optical design and skillful engineering, including excellent correction for the various optical aberrations that would otherwise compromise high-resolution imaging over a large field-of-view. Moreover, the Mesolens is an immersion lens, which means that the gap between the objective and the sample is filled with a medium such as oil, water or glycerol: McConnell et al. designed their lens to provide high-quality images in a variety of immersion media with different optical properties.

A confocal microscope is able to image a sample in all three dimensions by taking two-dimensional images at a range of different depths: the Mesolens allowed McConnell et al. to image volumes of up to 6 x 6 x 3 mm3 with a lateral resolution of 0.7–0.8 micrometers and an axial resolution of 7–8 micrometers (with a numerical aperture of 0.47). These figures are factors of at least two and three higher than the resolutions that can be achieved with currently available large field-of-view commercial objectives.

In addition to applications in developmental biology and embryology, including whole-embryo phenotyping and screening applications that require rapid imaging of large specimens, the ability to image samples measuring several millimeters across with near-cellular resolution will be useful in many other areas of the life sciences. In neuroscience, for example, researchers are trying to combine techniques such as tissue clearing and tissue expansion (Höckendorf et al., 2014; Marx, 2016) with large-volume light microscopy (Ji et al., 2016) to image entire mammalian brains at high resolution; the Mesolens could prove useful in these efforts. And extending beyond its application in confocal microscopy, the Mesolens could have applications in light-sheet microscopy (Keller and Ahrens, 2015), which excels in the rapid imaging of large volumes. In particular, combining the Mesolens with other techniques could reduce the need to use "optical tiling" when imaging large specimens, or to subject large specimens to sectioning and other destructive sample-preparation techniques.

The Mesolens highlights the increasingly important role of custom optical designs in improving the performance of light-based microscopes. Recent, complementary efforts in mesoscale imaging with two-photon microscopy also rely heavily on custom-built objectives. For example, the two-photon random access microscope developed by Karel Svoboda of the HHMI Janelia Research Campus and co-workers features a custom objective with a numerical aperture of 0.6 and a field-of-view of 5 millimeters, and enables imaging up to a depth of 1 millimeter (Sofroniew et al., 2016). The twin-region, panoramic two-photon microscope (Trepan2p) developed by Spencer Smith of the University of North Carolina and co-workers features a custom objective with a numerical aperture of 0.43 and a field of view of 3.5 millimeters, and has been used to image multiple cortical areas in mice (Stirman et al., 2016). Other examples of this emerging trend to develop new microscopes with custom-built optics include lattice light-sheet microscopy (Chen et al., 2014) and IsoView light-sheet microscopy (Chhetri et al., 2015).

By extending the scale of optical microscopy to several millimeters, this new generation of custom-built objectives also emphasizes the need for new wide-field detection systems that can take full advantage of the capabilities of these new lenses. To optimally sample the large field-of-view captured by the Mesolens in a wide-field microscope, gigapixel cameras will be needed: for comparison, a state-of-the-art scientific camera will typically have 4–6 megapixels. Various gigapixel designs are already under development (Brady et al., 2012; Zheng et al., 2014), and further advances in this domain will help exploit the full potential of the Mesolens in imaging large volumes at high resolution.

References

Article and author information

Author details

  1. Raghav K Chhetri

    HHMI Janelia Research Campus, Ashburn, United States
    For correspondence
    chhetrir@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.
  2. Philipp J Keller

    HHMI Janelia Research Campus, Ashburn, United States
    For correspondence
    kellerp@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2896-4920

Publication history

  1. Version of Record published: September 23, 2016 (version 1)

Copyright

© 2016, Chhetri et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,496
    views
  • 309
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Raghav K Chhetri
  2. Philipp J Keller
(2016)
Microscopy: Imaging far and wide
eLife 5:e21072.
https://doi.org/10.7554/eLife.21072

Further reading

    1. Developmental Biology
    Phuong-Khanh Nguyen, Louise Y Cheng
    Research Article Updated

    The brain is consisted of diverse neurons arising from a limited number of neural stem cells. Drosophila neural stem cells called neuroblasts (NBs) produces specific neural lineages of various lineage sizes depending on their location in the brain. In the Drosophila visual processing centre - the optic lobes (OLs), medulla NBs derived from the neuroepithelium (NE) give rise to neurons and glia cells of the medulla cortex. The timing and the mechanisms responsible for the cessation of medulla NBs are so far not known. In this study, we show that the termination of medulla NBs during early pupal development is determined by the exhaustion of the NE stem cell pool. Hence, altering NE-NB transition during larval neurogenesis disrupts the timely termination of medulla NBs. Medulla NBs terminate neurogenesis via a combination of apoptosis, terminal symmetric division via Prospero, and a switch to gliogenesis via Glial Cell Missing (Gcm); however, these processes occur independently of each other. We also show that temporal progression of the medulla NBs is mostly not required for their termination. As the Drosophila OL shares a similar mode of division with mammalian neurogenesis, understanding when and how these progenitors cease proliferation during development can have important implications for mammalian brain size determination and regulation of its overall function.

    1. Developmental Biology
    2. Neuroscience
    Amy R Poe, Lucy Zhu ... Matthew S Kayser
    Research Article

    Sleep and feeding patterns lack strong daily rhythms during early life. As diurnal animals mature, feeding is consolidated to the day and sleep to the night. In Drosophila, circadian sleep patterns are initiated with formation of a circuit connecting the central clock to arousal output neurons; emergence of circadian sleep also enables long-term memory (LTM). However, the cues that trigger the development of this clock-arousal circuit are unknown. Here, we identify a role for nutritional status in driving sleep-wake rhythm development in Drosophila larvae. We find that in the 2nd instar larval period (L2), sleep and feeding are spread across the day; these behaviors become organized into daily patterns by the 3rd instar larval stage (L3). Forcing mature (L3) animals to adopt immature (L2) feeding strategies disrupts sleep-wake rhythms and the ability to exhibit LTM. In addition, the development of the clock (DN1a)-arousal (Dh44) circuit itself is influenced by the larval nutritional environment. Finally, we demonstrate that larval arousal Dh44 neurons act through glucose metabolic genes to drive onset of daily sleep-wake rhythms. Together, our data suggest that changes to energetic demands in developing organisms trigger the formation of sleep-circadian circuits and behaviors.