Evolution of the hypoxia-sensitive cells involved in amniote respiratory reflexes
Abstract
The evolutionary origins of the hypoxia-sensitive cells that trigger amniote respiratory reflexes - carotid body glomus cells, and 'pulmonary neuroendocrine cells' (PNECs) - are obscure. Homology has been proposed between glomus cells, which are neural crest-derived, and the hypoxia-sensitive 'neuroepithelial cells' (NECs) of fish gills, whose embryonic origin is unknown. NECs have also been likened to PNECs, which differentiate in situ within lung airway epithelia. Using genetic lineage-tracing and neural crest-deficient mutants in zebrafish, and physical fate-mapping in frog and lamprey, we find that NECs are not neural crest-derived, but endoderm-derived, like PNECs, whose endodermal origin we confirm. We discover neural crest-derived catecholaminergic cells associated with zebrafish pharyngeal arch blood vessels, and propose a new model for amniote hypoxia-sensitive cell evolution: endoderm-derived NECs were retained as PNECs, while the carotid body evolved via the aggregation of neural crest-derived catecholaminergic (chromaffin) cells already associated with blood vessels in anamniote pharyngeal arches.
Article and author information
Author details
Funding
Wellcome (086804/Z/08/Z)
- Dorit Hockman
Wellcome (102889/Z/13/Z)
- Abigail S Tucker
National Institute of Dental and Craniofacial Research (R01-DE018477)
- Ela W Knapik
National Institute of Diabetes and Digestive and Kidney Diseases (1DP2DK098092)
- P Duc S Dong
Human Frontier Science Program (Long-Term Fellowship)
- Christian Mosimann
Helmholtz-Gemeinschaft (Helmholtz Portfolio Theme 'Metabolic Dysfunction and Common Disease')
- Heiko Lickert
Helmoltz Alliance (Imaging and Curing Environmental Metabolic Disease)
- Heiko Lickert
German Center for Diabetes Research
- Heiko Lickert
National Institutes of Health (R01-HL092217)
- Ela W Knapik
National Institute of Dental and Craniofacial Research (R21-DE021509)
- Shannon Fisher
Zebrafish Initiative of the Vanderbilt University Venture Capital Fund
- Ela W Knapik
Vanderbilt International Scholar Program (Graduate Student Scholarship)
- Gokhan Unlu
Swiss National Science Foundation (Advanced Postdoctoral Fellowship and Professorship)
- Christian Mosimann
Cambridge Trusts (Graduate Student Scholarship)
- Dorit Hockman
Cambridge Philosophical Society (Graduate Student Scholarship)
- Dorit Hockman
Oppenheimer Memorial Trust (Graduate Student Scholarship)
- Dorit Hockman
Trinity College Oxford (Junior Research Fellowship)
- Dorit Hockman
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: Experiments using Tg(-4.9sox10:creERT2);Tg(βactin:loxP-SuperStop-loxP-DsRed) zebrafish were conducted in compliance with the regulations of the Regierungspräsidium Tübingen and the Max Planck Society. Experiments using all other zebrafish lines were conducted according to protocols approved by the Institutional Animal Care and Use Committees in facilities accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC).Experiments using Xenopus laevis were conducted in accordance with the UK Animals (Scientific Procedures) Act 1986, with appropriate personal and project licences in place where necessary.Experiments using sea lamprey (Petromyzon marinus) were conducted according to protocols approved by the California Institute of Technology Institutional Animal Care and Use Committee.Experiments using transgenic mice were conducted in accordance with the UK Animals (Scientific Procedures) Act 1986, with appropriate personal and project licences in place.Experiments using chicken (Gallus gallus domesticus) embryos were conducted in accordance with the UK Animals (Scientific Procedures) Act 1986, with appropriate personal and project licences in place where necessary.
Copyright
© 2017, Hockman et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,161
- views
-
- 658
- downloads
-
- 64
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
A new single-cell atlas of gene expression provides insights into the patterning of the neural plate of mice.
-
- Developmental Biology
The evolutionary introduction of asymmetric cell division (ACD) into the developmental program facilitates the formation of a new cell type, contributing to developmental diversity and, eventually, species diversification. The micromere of the sea urchin embryo may serve as one of those examples: an ACD at the 16-cell stage forms micromeres unique to echinoids among echinoderms. We previously reported that a polarity factor, activator of G-protein signaling (AGS), plays a crucial role in micromere formation. However, AGS and its associated ACD factors are present in all echinoderms and across most metazoans. This raises the question of what evolutionary modifications of AGS protein or its surrounding molecular environment contributed to the evolutionary acquisition of micromeres only in echinoids. In this study, we learned that the GoLoco motifs at the AGS C-terminus play critical roles in regulating micromere formation in sea urchin embryos. Further, other echinoderms’ AGS or chimeric AGS that contain the C-terminus of AGS orthologs from various organisms showed varied localization and function in micromere formation. In contrast, the sea star or the pencil urchin orthologs of other ACD factors were consistently localized at the vegetal cortex in the sea urchin embryo, suggesting that AGS may be a unique variable factor that facilitates ACD diversity among echinoderms. Consistently, sea urchin AGS appears to facilitate micromere-like cell formation and accelerate the enrichment timing of the germline factor Vasa during early embryogenesis of the pencil urchin, an ancestral type of sea urchin. Based on these observations, we propose that the molecular evolution of a single polarity factor facilitates ACD diversity while preserving the core ACD machinery among echinoderms and beyond during evolution.