1. Biochemistry and Chemical Biology
  2. Cell Biology
Download icon

Metabolism: Keeping tabs on fructose

  1. Anath Shalev  Is a corresponding author
  1. University of Alabama at Birmingham, United States
  • Cited 26
  • Views 1,544
  • Annotations
Cite this article as: eLife 2016;5:e21263 doi: 10.7554/eLife.21263
Voice your concerns about research culture and research communication: Have your say in our 7th annual survey.


Too much fructose in the diet can worsen metabolic problems via a process that involves thioredoxin-interacting protein.

Main text

Fructose is a simple sugar that is found in many fruits and plants. Its strong sweetness and minimal effect on blood glucose levels make fructose a more attractive sweetener than other naturally occurring sugars. As a result, high-fructose corn syrup is often added to a variety of foods and drinks to make them sweeter (Figure 1). This has lead to people consuming much more fructose than in previous decades, especially in the United States and other westernized countries (Cox, 2002; Goran et al., 2013). Along with this trend, more and more evidence suggests that consuming too much fructose could detrimentally affect our metabolism. In particular, excess fructose consumption has been linked to an increased risk of insulin resistance, obesity, type 2 diabetes and non-alcoholic fatty liver disease (Elliott et al., 2002; Kolderup and Svihus, 2015). However, it remains controversial whether the fructose itself actually causes these metabolic problems, and different studies have reported conflicting results (Campos and Tappy, 2016).

Fructose in food and drink.

High fructose corn syrup – which is synthetically manufactured from broken down cornstarch – is added to many soft drinks to increase their sweetness, palatability and taste.

Image credit: “high fructose water color” by Laura Taylor (CC BY-NC-ND 2.0)

After we eat or drink fructose it is transported through the cells that line our small intestine with the help of sugar-transporting proteins called GLUT5 and GLUT2 (Gould et al., 1991; Burant et al., 1992). Once in the bloodstream, it is taken to the liver via the hepatic portal vein. The liver then removes some of the fructose in the blood; this ensures that fructose levels in the blood remain at least 10 times lower than glucose levels (Douard and Ferraris, 2008). However, the liver also converts fructose into a number of metabolites that can be used to increase stores of glucose and fat, and this might contribute to the detrimental effects on metabolism that are linked to eating fructose. The uptake of fructose by the small intestine is limited to control how much fructose gets into the blood and liver, but relatively little is known about this process.

Now, in eLife, Richard Lee and co-workers – including James Dotimas and Austin Lee as joint first authors – report that a protein referred to as TXNIP (which is short for thioredoxin-interacting protein) regulates fructose uptake via a previously unrecognized interaction with GLUT5 and GLUT2 (Dotimas et al., 2016). Normally, TXNIP acts to regulate the cell’s redox state. However, too much TXNIP can detrimentally affect how the body manages its glucose levels (referred to as glucose homeostasis) in a number of ways (Minn et al., 2005; Parikh et al., 2007; Chutkow et al., 2008; Xu et al., 2013).

The gene that encodes TXNIP is itself activated by sugars like glucose and fructose (Minn et al., 2005; Stoltzman et al., 2008; Cha-Molstad et al., 2009), and Dotimas et al. – who are based at Harvard and the Massachusetts General Hospital – confirmed that fructose promotes the production of TXNIP in the small intestine. They also went on to show that fructose actually promotes the interactions between TXNIP and GLUT5 and GLUT2 in the small intestine, and that TXNIP in turn increases fructose uptake.

By using mutant mice and radioactively labeled fructose, Dotimas et al. could show that mice fed fructose via a tube ended up with high levels of fructose in their blood and tissues, but only if they had a working copy of the gene for TXNIP. To confirm that TXNIP was making the small intestine absorb more fructose, they then performed a similar experiment but injected a solution of fructose directly into the bloodstream rather than feeding the mice via a tube. As expected, when the small intestine was bypassed like this, all the mice showed the same elevated levels of fructose in their tissues regardless of whether they had TXNIP or not (Dotimas et al., 2016).

Previous studies have shown that diabetes leads to increased production of TXNIP and that deleting the gene for TXNIP (or otherwise inhibiting the protein) can prevent diabetes, improve glucose tolerance and have a beneficial effect on glucose metabolism (Chen et al., 2008). Dotimas et al. found that mice without the gene for TXNIP were also protected against the detrimental effects of a high fructose diet on metabolism.

The researchers also found that triggering diabetes in mice (by killing their insulin-producing cells with a toxin called streptozotocin) led to more TXNIP being produced in the small intestine. This in turn resulted in more fructose being absorbed by the small intestine. Since deleting the gene for TXNIP diminished this effect, they propose that diabetes increases fructose absorption and that TXNIP is involved in this process. Indeed, the data show that TXNIP links fructose absorption to both glucose homeostasis and diabetes.

Though Dotimas et al. clearly demonstrate a new protein-protein interaction between TXNIP and the fructose transporters; it remains to be shown that this interaction actually causes the increase in fructose absorption. If indeed it does, the next challenge will be to work out exactly how this happens. Other challenges include determining how diabetes affects the levels of fructose circulating in the blood in humans, and to tease apart whether any changes in fructose levels are caused by the diabetes itself or by differences in diet.

In addition to supporting the notion that too much fructose in the diet is bad for metabolic control, at least in mice, the work of Lee, Dotimas, Lee and co-workers might also help explain why different studies have come to different conclusions and suggests that the context in which fructose is consumed is important. Just by itself – that is, without glucose being present and in the absence of diabetes or elevated TXNIP levels – very little fructose might be absorbed. In contrast, high levels of glucose will lead to an increase in TXNIP levels, which will promote the absorption of fructose and exacerbate existing problems with metabolism. In any case, the latest work is consistent with the overall concept that inhibiting TXNIP is beneficial for metabolism, and reveals yet another reason why this might be. Another interesting future research direction would be to ask how the gut microbiome might affect the way TXNIP regulates fructose uptake and any resulting metabolic sequelae or complications.


    1. Burant CF
    2. Takeda J
    3. Brot-Laroche E
    4. Bell GI
    5. Davidson NO
    Fructose transporter in human spermatozoa and small intestine is GLUT5
    Journal of Biological Chemistry 267:14523–14526.
    1. Elliott SS
    2. Keim NL
    3. Stern JS
    4. Teff K
    5. Havel PJ
    Fructose, weight gain, and the insulin resistance syndrome
     American Journal of Clinical Nutrition 76:911–922.

Article and author information

Author details

  1. Anath Shalev

    Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, United States
    For correspondence
    Competing interests
    The author declares that no competing interests exist.

Publication history

  1. Version of Record published: October 11, 2016 (version 1)


© 2016, Shalev

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.


  • 1,544
    Page views
  • 199
  • 26

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    Hongki Song et al.
    Research Article

    Membrane fusion requires R-, Qa-, Qb-, and Qc-family SNAREs that zipper into RQaQbQc coiled coils, driven by the sequestration of apolar amino acids. Zippering has been thought to provide all the force driving fusion. Sec17/aSNAP can form an oligomeric assembly with SNAREs with the Sec17 C-terminus bound to Sec18/NSF, the central region bound to SNAREs, and a crucial apolar loop near the N-terminus poised to insert into membranes. We now report that Sec17 and Sec18 will drive robust fusion without requiring zippering completion. Zippering-driven fusion is blocked by deleting the C-terminal quarter of any Q-SNARE domain or by replacing the apolar amino acids of the Qa-SNARE which face the center of the 4-SNARE coiled coils with polar residues. These blocks, singly or combined, are bypassed by Sec17 and Sec18, and SNARE-dependent fusion is restored without help from completing zippering.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Wan Hua Li et al.
    Research Article

    SARM1 regulates axonal degeneration through its NAD-metabolizing activity and is a drug target for neurodegenerative disorders. We designed and synthesized fluorescent conjugates of styryl derivative with pyridine to serve as substrates of SARM1, which exhibited large red-shifts after conversion. With the conjugates, SARM1 activation was visualized in live cells following elevation of endogenous NMN or treatment with a cell-permeant NMN-analog. In neurons, imaging documented mouse SARM1 activation preceded vincristine-induced axonal degeneration by hours. Library screening identified a derivative of nisoldipine as a covalent inhibitor of SARM1 that reacted with the cysteines, especially Cys311 in its ARM domain and blocked its NMN-activation, protecting axons from degeneration. The Cryo-EM structure showed that SARM1 was locked into an inactive conformation by the inhibitor, uncovering a potential neuroprotective mechanism of dihydropyridines.