Pausing guides RNA folding to populate transiently stable RNA structures for riboswitch-based transcription regulation

  1. Hannah Steinert
  2. Florian Sochor
  3. Anna Wacker
  4. Janina Buck
  5. Christina Helmling
  6. Fabian Hiller
  7. Sara Keyhani
  8. Jonas Noeske
  9. Steffen Kaspar Grimm
  10. Martin M Rudolph
  11. Heiko Keller
  12. Rachel Anne Mooney
  13. Robert Landick
  14. Beatrix Suess
  15. Boris Fürtig  Is a corresponding author
  16. Jens Wöhnert  Is a corresponding author
  17. Harald Schwalbe  Is a corresponding author
  1. Johann Wolfgang Goethe-University Frankfurt am Main, Germany
  2. Goethe University Frankfurt, Germany
  3. Technical University Darmstadt, Germany
  4. University of Wisconsin - Madison, United States

Abstract

In bacteria, the regulation of gene expression by cis-acting transcriptional riboswitches located in the 5'-untranslated regions of messenger RNA requires the temporal synchronization of RNA synthesis and ligand binding-dependent conformational refolding. Ligand binding to the aptamer domain of the riboswitch induces premature termination of the mRNA synthesis of ligand-associated genes due to the coupled formation of 3'-structural elements acting as terminators. To date, there has been no high resolution structural description of the concerted process of synthesis and ligand-induced restructuring of the regulatory RNA element. Here, we show that for the guanine-sensing xpt-pbuX riboswitch from Bacillus subtilis, the conformation of the full-length transcripts is static: it exclusively populates the functional off-state but cannot switch to the on-state, regardless of the presence or absence of ligand. We show that only the combined matching of transcription rates and ligand binding enables transcription intermediates to undergo ligand-dependent conformational refolding.

Article and author information

Author details

  1. Hannah Steinert

    Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Florian Sochor

    Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Anna Wacker

    Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Janina Buck

    Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Christina Helmling

    Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Fabian Hiller

    Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Sara Keyhani

    Johann Wolfgang Goethe-University Frankfurt am Main, Goethe University Frankfurt, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Jonas Noeske

    Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Steffen Kaspar Grimm

    Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Martin M Rudolph

    Department of Biology, Technical University Darmstadt, Darmstadt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Heiko Keller

    Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Rachel Anne Mooney

    Department of Biochemistry, University of Wisconsin - Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Robert Landick

    Department of Biochemistry, University of Wisconsin - Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Beatrix Suess

    Department of Biology, Technical University Darmstadt, Darmstadt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Boris Fürtig

    Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
    For correspondence
    fuertig@nmr.uni-frankfurt.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6443-7656
  16. Jens Wöhnert

    Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt, Germany
    For correspondence
    woehnert@bio.uni-frankfurt.de
    Competing interests
    The authors declare that no competing interests exist.
  17. Harald Schwalbe

    Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
    For correspondence
    schwalbe@nmr.uni-frankfurt.de
    Competing interests
    The authors declare that no competing interests exist.

Funding

Deutsche Forschungsgemeinschaft (SFB902)

  • Harald Schwalbe

State of Hesse (BMRZ)

  • Harald Schwalbe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Steinert et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,640
    views
  • 531
    downloads
  • 54
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hannah Steinert
  2. Florian Sochor
  3. Anna Wacker
  4. Janina Buck
  5. Christina Helmling
  6. Fabian Hiller
  7. Sara Keyhani
  8. Jonas Noeske
  9. Steffen Kaspar Grimm
  10. Martin M Rudolph
  11. Heiko Keller
  12. Rachel Anne Mooney
  13. Robert Landick
  14. Beatrix Suess
  15. Boris Fürtig
  16. Jens Wöhnert
  17. Harald Schwalbe
(2017)
Pausing guides RNA folding to populate transiently stable RNA structures for riboswitch-based transcription regulation
eLife 6:e21297.
https://doi.org/10.7554/eLife.21297

Share this article

https://doi.org/10.7554/eLife.21297

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.