Regulation of signaling directionality revealed by 3D snapshots of a kinase:regulator complex in action

  1. Felipe Trajtenberg
  2. Juan A Imelio
  3. Matías R Machado
  4. Nicole Larrieux
  5. Marcelo A Marti
  6. Gonzalo Obal
  7. Ariel E Mechaly
  8. Alejandro Buschiazzo  Is a corresponding author
  1. Institut Pasteur de Montevideo, Uruguay
  2. Universidad de Buenos Aires, Argentina

Abstract

Two-component systems (TCS) are protein machineries that enable cells to respond to input signals. Histidine kinases (HK) are the sensory component, transferring information toward downstream response regulators (RR). HKs transfer phosphoryl groups to their specific RRs, but also dephosphorylate them, overall ensuring proper signaling. The mechanisms by which HKs discriminate between such disparate directions, are yet unknown. We now disclose crystal structures of the HK:RR complex DesK:DesR from Bacillus subtilis, comprising snapshots of the phosphotransfer and the dephosphorylation reactions. The HK dictates the reactional outcome through conformational rearrangements that include the reactive histidine. The phosphotransfer center is asymmetric, poised for dissociative nucleophilic substitution. The structural bases of HK phosphatase/phosphotransferase control are uncovered, and the unexpected discovery of a dissociative reactional center, sheds light on the evolution of TCS phosphotransfer reversibility. Our findings should be applicable to a broad range of signaling systems and instrumental in synthetic TCS rewiring.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Felipe Trajtenberg

    Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
    Competing interests
    The authors declare that no competing interests exist.
  2. Juan A Imelio

    Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
    Competing interests
    The authors declare that no competing interests exist.
  3. Matías R Machado

    Biomolecular Simulations, Institut Pasteur de Montevideo, Montevideo, Uruguay
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicole Larrieux

    Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
    Competing interests
    The authors declare that no competing interests exist.
  5. Marcelo A Marti

    Dto. Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  6. Gonzalo Obal

    Protein Biophysics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
    Competing interests
    The authors declare that no competing interests exist.
  7. Ariel E Mechaly

    Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
    Competing interests
    The authors declare that no competing interests exist.
  8. Alejandro Buschiazzo

    Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
    For correspondence
    alebus@pasteur.edu.uy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2509-6526

Funding

Agencia Nacional de Investigación e Innovación (FCE2009_1_2679)

  • Felipe Trajtenberg
  • Alejandro Buschiazzo

Agence Nationale de la Recherche (PCV06_138918)

  • Alejandro Buschiazzo

FOCEM (COF 03/11)

  • Alejandro Buschiazzo

Centro de Biologia Estructural del Mercosur

  • Alejandro Buschiazzo

Agencia Nacional de Investigación e Innovación (FCE2007_219)

  • Felipe Trajtenberg
  • Alejandro Buschiazzo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Trajtenberg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Felipe Trajtenberg
  2. Juan A Imelio
  3. Matías R Machado
  4. Nicole Larrieux
  5. Marcelo A Marti
  6. Gonzalo Obal
  7. Ariel E Mechaly
  8. Alejandro Buschiazzo
(2016)
Regulation of signaling directionality revealed by 3D snapshots of a kinase:regulator complex in action
eLife 5:e21422.
https://doi.org/10.7554/eLife.21422

Share this article

https://doi.org/10.7554/eLife.21422

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yi-Hsuan Lin, Tae Hun Kim ... Hue Sun Chan
    Research Article

    Liquid-liquid phase separation (LLPS) involving intrinsically disordered protein regions (IDRs) is a major physical mechanism for biological membraneless compartmentalization. The multifaceted electrostatic effects in these biomolecular condensates are exemplified here by experimental and theoretical investigations of the different salt- and ATP-dependent LLPSs of an IDR of messenger RNA-regulating protein Caprin1 and its phosphorylated variant pY-Caprin1, exhibiting, for example, reentrant behaviors in some instances but not others. Experimental data are rationalized by physical modeling using analytical theory, molecular dynamics, and polymer field-theoretic simulations, indicating that interchain ion bridges enhance LLPS of polyelectrolytes such as Caprin1 and the high valency of ATP-magnesium is a significant factor for its colocalization with the condensed phases, as similar trends are observed for other IDRs. The electrostatic nature of these features complements ATP’s involvement in π-related interactions and as an amphiphilic hydrotrope, underscoring a general role of biomolecular condensates in modulating ion concentrations and its functional ramifications.

    1. Structural Biology and Molecular Biophysics
    Kingsley Y Wu, Ta I Hung, Chia-en A Chang
    Research Article

    PROteolysis TArgeting Chimeras (PROTACs) are small molecules that induce target protein degradation via the ubiquitin-proteasome system. PROTACs recruit the target protein and E3 ligase; a critical first step is forming a ternary complex. However, while the formation of a ternary complex is crucial, it may not always guarantee successful protein degradation. The dynamics of the PROTAC-induced degradation complex play a key role in ubiquitination and subsequent degradation. In this study, we computationally modelled protein complex structures and dynamics associated with a series of PROTACs featuring different linkers to investigate why these PROTACs, all of which formed ternary complexes with Cereblon (CRBN) E3 ligase and the target protein bromodomain-containing protein 4 (BRD4BD1), exhibited varying degrees of degradation potency. We constructed the degradation machinery complexes with Culling-Ring Ligase 4A (CRL4A) E3 ligase scaffolds. Through atomistic molecular dynamics simulations, we illustrated how PROTAC-dependent protein dynamics facilitating the arrangement of surface lysine residues of BRD4BD1 into the catalytic pocket of E2/ubiquitin cascade for ubiquitination. Despite featuring identical warheads in this PROTAC series, the linkers were found to affect the residue-interaction networks, and thus governing the essential motions of the entire degradation machine for ubiquitination. These findings offer a structural dynamic perspective on ligand-induced protein degradation, providing insights to guide future PROTAC design endeavors.