1. Biochemistry and Chemical Biology
  2. Cell Biology
Download icon

Targeting of the Fun30 nucleosome remodeller by the Dpb11 scaffold facilitates cell cycle-regulated DNA end resection

  1. Susanne CS Bantele
  2. Pedro Ferreira
  3. Dalia Gritenaite
  4. Dominik Boos
  5. Boris Pfander  Is a corresponding author
  1. Max Planck Institute of Biochemistry, Germany
  2. University Duisburg-Essen, Germany
Research Article
  • Cited 16
  • Views 1,738
  • Annotations
Cite this article as: eLife 2017;6:e21687 doi: 10.7554/eLife.21687

Abstract

DNA double strand breaks (DSBs) can be repaired by either recombination-based or direct ligation-based mechanisms. Pathway choice is made at the level of DNA end resection, a nucleolytic processing step, which primes DSBs for repair by recombination. Resection is thus under cell cycle control, but additionally regulated by chromatin and nucleosome remodellers. Here we show that both layers of control converge in the regulation of resection by the evolutionarily conserved Fun30/SMARCAD1 remodeller. Yeast Fun30 and human SMARCAD1 are cell cycle-regulated by interaction with the DSB-localized scaffold proteins Dpb11 and TOPBP1, respectively. In yeast this protein assembly additionally comprises the 9-1-1 damage sensor, is involved in localizing Fun30 to damaged chromatin and thus is required for efficient long-range resection of DSBs. Notably, artificial targeting of Fun30 to DSBs is sufficient to bypass the cell cycle regulation of long-range resection, indicating that chromatin remodelling during resection is underlying DSB repair pathway choice.

Article and author information

Author details

  1. Susanne CS Bantele

    DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Pedro Ferreira

    Centre for Medical Biotechnology, University Duisburg-Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Dalia Gritenaite

    DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Dominik Boos

    Centre for Medical Biotechnology, University Duisburg-Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Boris Pfander

    DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
    For correspondence
    bpfander@biochem.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2180-5054

Funding

Deutsche Forschungsgemeinschaft (Project Grant,PF794/3-1)

  • Boris Pfander

Max-Planck-Gesellschaft (Grant)

  • Boris Pfander

Fonds der chemischen Industrie (Fellowship)

  • Susanne CS Bantele

NRW Rueckkehrerprogramm from the stae of North-Rhine-Westphalia (Grant)

  • Dominik Boos

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gregory Ira, Baylor College of Medicine, United States

Publication history

  1. Received: September 21, 2016
  2. Accepted: January 3, 2017
  3. Accepted Manuscript published: January 7, 2017 (version 1)
  4. Accepted Manuscript updated: January 12, 2017 (version 2)
  5. Version of Record published: February 9, 2017 (version 3)

Copyright

© 2017, Bantele et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,738
    Page views
  • 641
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Rigney E Turnham et al.
    Research Article Updated
    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Josef Fischböck-Halwachs et al.
    Research Article