Targeting of the Fun30 nucleosome remodeller by the Dpb11 scaffold facilitates cell cycle-regulated DNA end resection

  1. Susanne CS Bantele
  2. Pedro Ferreira
  3. Dalia Gritenaite
  4. Dominik Boos
  5. Boris Pfander  Is a corresponding author
  1. Max Planck Institute of Biochemistry, Germany
  2. University Duisburg-Essen, Germany

Abstract

DNA double strand breaks (DSBs) can be repaired by either recombination-based or direct ligation-based mechanisms. Pathway choice is made at the level of DNA end resection, a nucleolytic processing step, which primes DSBs for repair by recombination. Resection is thus under cell cycle control, but additionally regulated by chromatin and nucleosome remodellers. Here we show that both layers of control converge in the regulation of resection by the evolutionarily conserved Fun30/SMARCAD1 remodeller. Yeast Fun30 and human SMARCAD1 are cell cycle-regulated by interaction with the DSB-localized scaffold proteins Dpb11 and TOPBP1, respectively. In yeast this protein assembly additionally comprises the 9-1-1 damage sensor, is involved in localizing Fun30 to damaged chromatin and thus is required for efficient long-range resection of DSBs. Notably, artificial targeting of Fun30 to DSBs is sufficient to bypass the cell cycle regulation of long-range resection, indicating that chromatin remodelling during resection is underlying DSB repair pathway choice.

Article and author information

Author details

  1. Susanne CS Bantele

    DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Pedro Ferreira

    Centre for Medical Biotechnology, University Duisburg-Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Dalia Gritenaite

    DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Dominik Boos

    Centre for Medical Biotechnology, University Duisburg-Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Boris Pfander

    DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
    For correspondence
    bpfander@biochem.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2180-5054

Funding

Deutsche Forschungsgemeinschaft (Project Grant,PF794/3-1)

  • Boris Pfander

Max-Planck-Gesellschaft (Grant)

  • Boris Pfander

Fonds der chemischen Industrie (Fellowship)

  • Susanne CS Bantele

NRW Rueckkehrerprogramm from the stae of North-Rhine-Westphalia (Grant)

  • Dominik Boos

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gregory Ira, Baylor College of Medicine, United States

Publication history

  1. Received: September 21, 2016
  2. Accepted: January 3, 2017
  3. Accepted Manuscript published: January 7, 2017 (version 1)
  4. Accepted Manuscript updated: January 12, 2017 (version 2)
  5. Version of Record published: February 9, 2017 (version 3)

Copyright

© 2017, Bantele et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,412
    Page views
  • 738
    Downloads
  • 34
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Susanne CS Bantele
  2. Pedro Ferreira
  3. Dalia Gritenaite
  4. Dominik Boos
  5. Boris Pfander
(2017)
Targeting of the Fun30 nucleosome remodeller by the Dpb11 scaffold facilitates cell cycle-regulated DNA end resection
eLife 6:e21687.
https://doi.org/10.7554/eLife.21687

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Abhinay Ramaprasad, Paul-Christian Burda ... Michael J Blackman
    Research Article Updated

    The malaria parasite Plasmodium falciparum synthesizes significant amounts of phospholipids to meet the demands of replication within red blood cells. De novo phosphatidylcholine (PC) biosynthesis via the Kennedy pathway is essential, requiring choline that is primarily sourced from host serum lysophosphatidylcholine (lysoPC). LysoPC also acts as an environmental sensor to regulate parasite sexual differentiation. Despite these critical roles for host lysoPC, the enzyme(s) involved in its breakdown to free choline for PC synthesis are unknown. Here, we show that a parasite glycerophosphodiesterase (PfGDPD) is indispensable for blood stage parasite proliferation. Exogenous choline rescues growth of PfGDPD-null parasites, directly linking PfGDPD function to choline incorporation. Genetic ablation of PfGDPD reduces choline uptake from lysoPC, resulting in depletion of several PC species in the parasite, whilst purified PfGDPD releases choline from glycerophosphocholine in vitro. Our results identify PfGDPD as a choline-releasing glycerophosphodiesterase that mediates a critical step in PC biosynthesis and parasite survival.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jiemin Shen, Azaan Saalim Wilbon ... Yaping Pan
    Research Article Updated

    Ferroportin (Fpn) is a transporter that releases ferrous ion (Fe2+) from cells and is important for homeostasis of iron in circulation. Export of one Fe2+ by Fpn is coupled to import of two H+ to maintain charge balance. Here, we show that human Fpn (HsFpn) binds to and mediates Ca2+ transport. We determine the structure of Ca2+-bound HsFpn and identify a single Ca2+ binding site distinct from the Fe2+ binding sites. Further studies validate the Ca2+ binding site and show that Ca2+ transport is not coupled to transport of another ion. In addition, Ca2+ transport is significantly inhibited in the presence of Fe2+ but not vice versa. Function of Fpn as a Ca2+ uniporter may allow regulation of iron homeostasis by Ca2+.