Global reorganisation of cis-regulatory units upon lineage commitment of human embryonic stem cells

  1. Paula Freire-Pritchett
  2. Stefan Schoenfelder
  3. Csilla Várnai
  4. Steven W Wingett
  5. Jonathan Cairns
  6. Amanda J Collier
  7. Raquel García-Vílchez
  8. Mayra Furlan-Magaril
  9. Cameron S Osborne
  10. Peter J Fraser
  11. Peter J Rugg-Gunn  Is a corresponding author
  12. Mikhail Spivakov  Is a corresponding author
  1. The Babraham Institute, United Kingdom
  2. Universidad Nacional Autónoma de México, Mexico
  3. King's College London School of Medicine, United Kingdom

Abstract

Long-range cis-regulatory elements such as enhancers coordinate cell-specific transcriptional programmes by engaging in DNA looping interactions with target promoters. Deciphering the interplay between the promoter connectivity and activity of cis-regulatory elements during lineage commitment is crucial for understanding developmental transcriptional control. Here, we use Promoter Capture Hi-C to generate a high-resolution atlas of chromosomal interactions involving ~22,000 gene promoters in human pluripotent and lineage-committed cells, identifying putative target genes for known and predicted enhancer elements. We reveal extensive dynamics of cis-regulatory contacts upon lineage commitment, including the acquisition and loss of promoter interactions. This spatial rewiring occurs preferentially with predicted changes in the activity of cis-regulatory elements, and is associated with changes in target gene expression. Our results provide a global and integrated view of promoter interactome dynamics during lineage commitment of human pluripotent cells.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Paula Freire-Pritchett

    Nuclear Dynamics Programme, The Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Stefan Schoenfelder

    Nuclear Dynamics Programme, The Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Csilla Várnai

    Nuclear Dynamics Programme, The Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Steven W Wingett

    Nuclear Dynamics Programme, The Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Jonathan Cairns

    Nuclear Dynamics Programme, The Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Amanda J Collier

    Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Raquel García-Vílchez

    Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Mayra Furlan-Magaril

    Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  9. Cameron S Osborne

    Department of Genetics and Molecular Medicine, King's College London School of Medicine, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Peter J Fraser

    Nuclear Dynamics Programme, The Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Peter J Rugg-Gunn

    Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
    For correspondence
    peter.rugg-gunn@babraham.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  12. Mikhail Spivakov

    Nuclear Dynamics Programme, The Babraham Institute, Cambridge, United Kingdom
    For correspondence
    mikhail.spivakov@babraham.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0383-3943

Funding

Wellcome (WT093736)

  • Peter J Rugg-Gunn

Biotechnology and Biological Sciences Research Council (BB/J004480/1)

  • Paula Freire-Pritchett
  • Stefan Schoenfelder
  • Csilla Várnai
  • Steven W Wingett
  • Jonathan Cairns
  • Mayra Furlan-Magaril
  • Peter J Fraser
  • Mikhail Spivakov

Medical Research Council (MR/J003808/1)

  • Amanda J Collier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Job Dekker, University of Massachusetts Medical School, United States

Version history

  1. Received: September 28, 2016
  2. Accepted: March 22, 2017
  3. Accepted Manuscript published: March 23, 2017 (version 1)
  4. Version of Record published: April 27, 2017 (version 2)

Copyright

© 2017, Freire-Pritchett et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,173
    views
  • 1,448
    downloads
  • 127
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Paula Freire-Pritchett
  2. Stefan Schoenfelder
  3. Csilla Várnai
  4. Steven W Wingett
  5. Jonathan Cairns
  6. Amanda J Collier
  7. Raquel García-Vílchez
  8. Mayra Furlan-Magaril
  9. Cameron S Osborne
  10. Peter J Fraser
  11. Peter J Rugg-Gunn
  12. Mikhail Spivakov
(2017)
Global reorganisation of cis-regulatory units upon lineage commitment of human embryonic stem cells
eLife 6:e21926.
https://doi.org/10.7554/eLife.21926

Share this article

https://doi.org/10.7554/eLife.21926

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Mayank Verma, Yoko Asakura ... Atsushi Asakura
    Research Article

    Endothelial and skeletal muscle lineages arise from common embryonic progenitors. Despite their shared developmental origin, adult endothelial cells (ECs) and muscle stem cells (MuSCs) (satellite cells) have been thought to possess distinct gene signatures and signaling pathways. Here we shift this paradigm by uncovering how adult MuSC behavior is affected by the expression of a subset of EC transcripts. We used several computational analyses including single-cell RNAseq to show that MuSCs express low levels of canonical EC markers in mice. We demonstrate that MuSC survival is regulated by one such prototypic endothelial signaling pathway (VEGFA-FLT1). Using pharmacological and genetic gain- and loss-of-function studies, we identify the FLT1-AKT1 axis as the key effector underlying VEGFA-mediated regulation of MuSC survival. All together, our data support that the VEGFA-FLT1-AKT1 pathway promotes MuSC survival during muscle regeneration, and highlights how the minor expression of select transcripts is sufficient for affecting cell behavior.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Pascal Forcella, Niklas Ifflander ... Verdon Taylor
    Research Article Updated

    Neural stem cells (NSCs) are multipotent and correct fate determination is crucial to guarantee brain formation and homeostasis. How NSCs are instructed to generate neuronal or glial progeny is not well understood. Here, we addressed how murine adult hippocampal NSC fate is regulated and described how scaffold attachment factor B (SAFB) blocks oligodendrocyte production to enable neuron generation. We found that SAFB prevents NSC expression of the transcription factor nuclear factor I/B (NFIB) by binding to sequences in the Nfib mRNA and enhancing Drosha-dependent cleavage of the transcripts. We show that increasing SAFB expression prevents oligodendrocyte production by multipotent adult NSCs, and conditional deletion of Safb increases NFIB expression and oligodendrocyte formation in the adult hippocampus. Our results provide novel insights into a mechanism that controls Drosha functions for selective regulation of NSC fate by modulating the post-transcriptional destabilization of Nfib mRNA in a lineage-specific manner.