Data-driven identification of potential Zika virus vectors

  1. Michelle V Evans  Is a corresponding author
  2. Tad A Dallas
  3. Barbara A Han
  4. Courtney C Murdock
  5. John M Drake
  1. University of Georgia, United States
  2. Cary Institute of Ecosystem Studies, United States

Abstract

Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Michelle V Evans

    Odum School of Ecology, University of Georgia, Athens, United States
    For correspondence
    mvevans@uga.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5628-0502
  2. Tad A Dallas

    Odum School of Ecology, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Barbara A Han

    Cary Institute of Ecosystem Studies, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9948-3078
  4. Courtney C Murdock

    Odum School of Ecology, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. John M Drake

    Odum School of Ecology, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4646-1235

Funding

National Science Foundation (DEB-1640780)

  • Courtney C Murdock

University of Georgia (Presidential Fellowship)

  • Michelle V Evans

National Institutes of Health (U01GM110744)

  • John M Drake

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Evans et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,489
    views
  • 915
    downloads
  • 65
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michelle V Evans
  2. Tad A Dallas
  3. Barbara A Han
  4. Courtney C Murdock
  5. John M Drake
(2017)
Data-driven identification of potential Zika virus vectors
eLife 6:e22053.
https://doi.org/10.7554/eLife.22053

Share this article

https://doi.org/10.7554/eLife.22053

Further reading

    1. Computational and Systems Biology
    2. Medicine
    Xin Zhou, Zhinuo Jenny Wang ... Blanca Rodriguez
    Research Article

    Sudden death after myocardial infarction (MI) is associated with electrophysiological heterogeneities and ionic current remodelling. Low ejection fraction (EF) is used in risk stratification, but its mechanistic links with pro-arrhythmic heterogeneities are unknown. We aim to provide mechanistic explanations of clinical phenotypes in acute and chronic MI, from ionic current remodelling to ECG and EF, using human electromechanical modelling and simulation to augment experimental and clinical investigations. A human ventricular electromechanical modelling and simulation framework is constructed and validated with rich experimental and clinical datasets, incorporating varying degrees of ionic current remodelling as reported in literature. In acute MI, T-wave inversion and Brugada phenocopy were explained by conduction abnormality and local action potential prolongation in the border zone. In chronic MI, upright tall T-waves highlight large repolarisation dispersion between the border and remote zones, which promoted ectopic propagation at fast pacing. Post-MI EF at resting heart rate was not sensitive to the extent of repolarisation heterogeneity and the risk of repolarisation abnormalities at fast pacing. T-wave and QT abnormalities are better indicators of repolarisation heterogeneities than EF in post-MI.

    1. Computational and Systems Biology
    Alessandro Bitto
    Insight

    Measuring mitochondrial respiration in frozen tissue samples provides the first comprehensive atlas of how aging affects mitochondrial function in mice.