T cell receptor repertoires of mice and humans are clustered in similarity networks around conserved public CDR3 sequences

  1. Asaf Madi
  2. Asaf Poran
  3. Eric Shifrut
  4. Shlomit Reich-Zeliger
  5. Erez Greenstein
  6. Irena Zaretsky
  7. Tomer Arnon
  8. Francois Van Laethem
  9. Alfred Singer
  10. Jinghua Lu
  11. Peter D Sun
  12. Irun R Cohen
  13. Nir Friedman  Is a corresponding author
  1. Weizmann Institute of Science, Israel
  2. Weizmann Institute, Israel
  3. National Cancer Institute, United States
  4. National Institute of Allergy and Infectious Diseases, United States

Abstract

Diversity of T cell receptor (TCR) repertoires, generated by somatic DNA rearrangements, is central to immune system function. However, the level of sequence similarity of TCR repertoires within and between species has not been characterized. Using network analysis of high-throughput TCR sequencing data, we found that abundant CDR3-TCRβ sequences were clustered within networks generated by sequence similarity. We discovered a substantial number of public CDR3-TCRβ segments that were identical in mice and humans. These conserved public sequences were central within TCR sequence-similarity networks. Annotated TCR sequences, previously associated with self-specificities such as autoimmunity and cancer, were linked to network clusters. Mechanistically, CDR3 networks were promoted by MHC-mediated selection, and were reduced following immunization, immune checkpoint blockade or aging. Our findings provide a new view of T cell repertoire organization and physiology, and suggest that the immune system distributes its TCR sequences unevenly, attending to specific foci of reactivity.

Data availability

The following previously published data sets were used
    1. Nir Friedman
    (2015) Young mice TCR repertoire
    Publicly available at NCBI Sequence Read Archive (accession no: SRP042610).

Article and author information

Author details

  1. Asaf Madi

    Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3441-3228
  2. Asaf Poran

    Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Eric Shifrut

    Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Shlomit Reich-Zeliger

    Department of Immunology, Weizmann Institute, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Erez Greenstein

    Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Irena Zaretsky

    Department of Immunology, Weizmann Institute, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4161-4677
  7. Tomer Arnon

    Department of Immunology, Weizmann Institute, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  8. Francois Van Laethem

    Experimental Immunology Branch, National Cancer Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Alfred Singer

    Experimental Immunology Branch, National Cancer Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jinghua Lu

    Structural Immunology Section, National Institute of Allergy and Infectious Diseases, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Peter D Sun

    Structural Immunology Section, National Institute of Allergy and Infectious Diseases, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Irun R Cohen

    Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  13. Nir Friedman

    Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    nir.friedman@weizmann.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9678-3550

Funding

Minerva Foundation

  • Nir Friedman

Federal German Ministry for Education and Research

  • Nir Friedman

I-CORE

  • Nir Friedman

Israel Science Foundation

  • Nir Friedman

M.D. Moross Institute for Cancer Reseach

  • Asaf Madi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#24110116-2) of the Weizmann Institute of Science. The protocol was approved by the Committee on the Ethics of Animal Experiments of the Weizmann Institute of Science. Every effort was made to minimize suffering.

Reviewing Editor

  1. Arup K Chakraborty, Ragon Institute of MGH, MIT and Harvard, United States

Version history

  1. Received: October 10, 2016
  2. Accepted: July 14, 2017
  3. Accepted Manuscript published: July 21, 2017 (version 1)
  4. Version of Record published: August 11, 2017 (version 2)

Copyright

© 2017, Madi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,551
    Page views
  • 1,093
    Downloads
  • 94
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Asaf Madi
  2. Asaf Poran
  3. Eric Shifrut
  4. Shlomit Reich-Zeliger
  5. Erez Greenstein
  6. Irena Zaretsky
  7. Tomer Arnon
  8. Francois Van Laethem
  9. Alfred Singer
  10. Jinghua Lu
  11. Peter D Sun
  12. Irun R Cohen
  13. Nir Friedman
(2017)
T cell receptor repertoires of mice and humans are clustered in similarity networks around conserved public CDR3 sequences
eLife 6:e22057.
https://doi.org/10.7554/eLife.22057

Share this article

https://doi.org/10.7554/eLife.22057

Further reading

    1. Computational and Systems Biology
    James D Brunner, Nicholas Chia
    Research Article

    The microbial community composition in the human gut has a profound effect on human health. This observation has lead to extensive use of microbiome therapies, including over-the-counter 'probiotic' treatments intended to alter the composition of the microbiome. Despite so much promise and commercial interest, the factors that contribute to the success or failure of microbiome-targeted treatments remain unclear. We investigate the biotic interactions that lead to successful engraftment of a novel bacterial strain introduced to the microbiome as in probiotic treatments. We use pairwise genome-scale metabolic modeling with a generalized resource allocation constraint to build a network of interactions between taxa that appear in an experimental engraftment study. We create induced sub-graphs using the taxa present in individual samples and assess the likelihood of invader engraftment based on network structure. To do so, we use a generalized Lotka-Volterra model, which we show has strong ability to predict if a particular invader or probiotic will successfully engraft into an individual's microbiome. Furthermore, we show that the mechanistic nature of the model is useful for revealing which microbe-microbe interactions potentially drive engraftment.

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Nicholas M Boffi, Yipei Guo ... Ariel Amir
    Research Article

    The adaptive dynamics of evolving microbial populations takes place on a complex fitness landscape generated by epistatic interactions. The population generically consists of multiple competing strains, a phenomenon known as clonal interference. Microscopic epistasis and clonal interference are central aspects of evolution in microbes, but their combined effects on the functional form of the population’s mean fitness are poorly understood. Here, we develop a computational method that resolves the full microscopic complexity of a simulated evolving population subject to a standard serial dilution protocol. Through extensive numerical experimentation, we find that stronger microscopic epistasis gives rise to fitness trajectories with slower growth independent of the number of competing strains, which we quantify with power-law fits and understand mechanistically via a random walk model that neglects dynamical correlations between genes. We show that increasing the level of clonal interference leads to fitness trajectories with faster growth (in functional form) without microscopic epistasis, but leaves the rate of growth invariant when epistasis is sufficiently strong, indicating that the role of clonal interference depends intimately on the underlying fitness landscape. The simulation package for this work may be found at https://github.com/nmboffi/spin_glass_evodyn.