T cell receptor repertoires of mice and humans are clustered in similarity networks around conserved public CDR3 sequences

  1. Asaf Madi
  2. Asaf Poran
  3. Eric Shifrut
  4. Shlomit Reich-Zeliger
  5. Erez Greenstein
  6. Irena Zaretsky
  7. Tomer Arnon
  8. Francois Van Laethem
  9. Alfred Singer
  10. Jinghua Lu
  11. Peter D Sun
  12. Irun R Cohen
  13. Nir Friedman  Is a corresponding author
  1. Weizmann Institute of Science, Israel
  2. Weizmann Institute, Israel
  3. National Cancer Institute, United States
  4. National Institute of Allergy and Infectious Diseases, United States

Abstract

Diversity of T cell receptor (TCR) repertoires, generated by somatic DNA rearrangements, is central to immune system function. However, the level of sequence similarity of TCR repertoires within and between species has not been characterized. Using network analysis of high-throughput TCR sequencing data, we found that abundant CDR3-TCRβ sequences were clustered within networks generated by sequence similarity. We discovered a substantial number of public CDR3-TCRβ segments that were identical in mice and humans. These conserved public sequences were central within TCR sequence-similarity networks. Annotated TCR sequences, previously associated with self-specificities such as autoimmunity and cancer, were linked to network clusters. Mechanistically, CDR3 networks were promoted by MHC-mediated selection, and were reduced following immunization, immune checkpoint blockade or aging. Our findings provide a new view of T cell repertoire organization and physiology, and suggest that the immune system distributes its TCR sequences unevenly, attending to specific foci of reactivity.

Data availability

The following previously published data sets were used
    1. Nir Friedman
    (2015) Young mice TCR repertoire
    Publicly available at NCBI Sequence Read Archive (accession no: SRP042610).

Article and author information

Author details

  1. Asaf Madi

    Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3441-3228
  2. Asaf Poran

    Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Eric Shifrut

    Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Shlomit Reich-Zeliger

    Department of Immunology, Weizmann Institute, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Erez Greenstein

    Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Irena Zaretsky

    Department of Immunology, Weizmann Institute, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4161-4677
  7. Tomer Arnon

    Department of Immunology, Weizmann Institute, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  8. Francois Van Laethem

    Experimental Immunology Branch, National Cancer Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Alfred Singer

    Experimental Immunology Branch, National Cancer Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jinghua Lu

    Structural Immunology Section, National Institute of Allergy and Infectious Diseases, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Peter D Sun

    Structural Immunology Section, National Institute of Allergy and Infectious Diseases, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Irun R Cohen

    Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  13. Nir Friedman

    Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    nir.friedman@weizmann.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9678-3550

Funding

Minerva Foundation

  • Nir Friedman

Federal German Ministry for Education and Research

  • Nir Friedman

I-CORE

  • Nir Friedman

Israel Science Foundation

  • Nir Friedman

M.D. Moross Institute for Cancer Reseach

  • Asaf Madi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#24110116-2) of the Weizmann Institute of Science. The protocol was approved by the Committee on the Ethics of Animal Experiments of the Weizmann Institute of Science. Every effort was made to minimize suffering.

Copyright

© 2017, Madi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,150
    views
  • 1,155
    downloads
  • 142
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Asaf Madi
  2. Asaf Poran
  3. Eric Shifrut
  4. Shlomit Reich-Zeliger
  5. Erez Greenstein
  6. Irena Zaretsky
  7. Tomer Arnon
  8. Francois Van Laethem
  9. Alfred Singer
  10. Jinghua Lu
  11. Peter D Sun
  12. Irun R Cohen
  13. Nir Friedman
(2017)
T cell receptor repertoires of mice and humans are clustered in similarity networks around conserved public CDR3 sequences
eLife 6:e22057.
https://doi.org/10.7554/eLife.22057

Share this article

https://doi.org/10.7554/eLife.22057

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Ruihan Dong, Rongrong Liu ... Cheng Zhu
    Research Article

    Antimicrobial peptides (AMPs) are attractive candidates to combat antibiotic resistance for their capability to target biomembranes and restrict a wide range of pathogens. It is a daunting challenge to discover novel AMPs due to their sparse distributions in a vast peptide universe, especially for peptides that demonstrate potencies for both bacterial membranes and viral envelopes. Here, we establish a de novo AMP design framework by bridging a deep generative module and a graph-encoding activity regressor. The generative module learns hidden ‘grammars’ of AMP features and produces candidates sequentially pass antimicrobial predictor and antiviral classifiers. We discovered 16 bifunctional AMPs and experimentally validated their abilities to inhibit a spectrum of pathogens in vitro and in animal models. Notably, P076 is a highly potent bactericide with the minimal inhibitory concentration of 0.21 μM against multidrug-resistant Acinetobacter baumannii, while P002 broadly inhibits five enveloped viruses. Our study provides feasible means to uncover the sequences that simultaneously encode antimicrobial and antiviral activities, thus bolstering the function spectra of AMPs to combat a wide range of drug-resistant infections.

    1. Computational and Systems Biology
    2. Neuroscience
    Gabriel Loewinger, Erjia Cui ... Francisco Pereira
    Tools and Resources

    Fiber photometry has become a popular technique to measure neural activity in vivo, but common analysis strategies can reduce the detection of effects because they condense within-trial signals into summary measures, and discard trial-level information by averaging across-trials. We propose a novel photometry statistical framework based on functional linear mixed modeling, which enables hypothesis testing of variable effects at every trial time-point, and uses trial-level signals without averaging. This makes it possible to compare the timing and magnitude of signals across conditions while accounting for between-animal differences. Our framework produces a series of plots that illustrate covariate effect estimates and statistical significance at each trial time-point. By exploiting signal autocorrelation, our methodology yields joint 95% confidence intervals that account for inspecting effects across the entire trial and improve the detection of event-related signal changes over common multiple comparisons correction strategies. We reanalyze data from a recent study proposing a theory for the role of mesolimbic dopamine in reward learning, and show the capability of our framework to reveal significant effects obscured by standard analysis approaches. For example, our method identifies two dopamine components with distinct temporal dynamics in response to reward delivery. In simulation experiments, our methodology yields improved statistical power over common analysis approaches. Finally, we provide an open-source package and analysis guide for applying our framework.