T cell receptor repertoires of mice and humans are clustered in similarity networks around conserved public CDR3 sequences

  1. Asaf Madi
  2. Asaf Poran
  3. Eric Shifrut
  4. Shlomit Reich-Zeliger
  5. Erez Greenstein
  6. Irena Zaretsky
  7. Tomer Arnon
  8. Francois Van Laethem
  9. Alfred Singer
  10. Jinghua Lu
  11. Peter D Sun
  12. Irun R Cohen
  13. Nir Friedman  Is a corresponding author
  1. Weizmann Institute of Science, Israel
  2. Weizmann Institute, Israel
  3. National Cancer Institute, United States
  4. National Institute of Allergy and Infectious Diseases, United States

Abstract

Diversity of T cell receptor (TCR) repertoires, generated by somatic DNA rearrangements, is central to immune system function. However, the level of sequence similarity of TCR repertoires within and between species has not been characterized. Using network analysis of high-throughput TCR sequencing data, we found that abundant CDR3-TCRβ sequences were clustered within networks generated by sequence similarity. We discovered a substantial number of public CDR3-TCRβ segments that were identical in mice and humans. These conserved public sequences were central within TCR sequence-similarity networks. Annotated TCR sequences, previously associated with self-specificities such as autoimmunity and cancer, were linked to network clusters. Mechanistically, CDR3 networks were promoted by MHC-mediated selection, and were reduced following immunization, immune checkpoint blockade or aging. Our findings provide a new view of T cell repertoire organization and physiology, and suggest that the immune system distributes its TCR sequences unevenly, attending to specific foci of reactivity.

Data availability

The following previously published data sets were used
    1. Nir Friedman
    (2015) Young mice TCR repertoire
    Publicly available at NCBI Sequence Read Archive (accession no: SRP042610).

Article and author information

Author details

  1. Asaf Madi

    Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3441-3228
  2. Asaf Poran

    Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Eric Shifrut

    Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Shlomit Reich-Zeliger

    Department of Immunology, Weizmann Institute, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Erez Greenstein

    Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Irena Zaretsky

    Department of Immunology, Weizmann Institute, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4161-4677
  7. Tomer Arnon

    Department of Immunology, Weizmann Institute, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  8. Francois Van Laethem

    Experimental Immunology Branch, National Cancer Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Alfred Singer

    Experimental Immunology Branch, National Cancer Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jinghua Lu

    Structural Immunology Section, National Institute of Allergy and Infectious Diseases, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Peter D Sun

    Structural Immunology Section, National Institute of Allergy and Infectious Diseases, Rockville, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Irun R Cohen

    Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  13. Nir Friedman

    Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    nir.friedman@weizmann.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9678-3550

Funding

Minerva Foundation

  • Nir Friedman

Federal German Ministry for Education and Research

  • Nir Friedman

I-CORE

  • Nir Friedman

Israel Science Foundation

  • Nir Friedman

M.D. Moross Institute for Cancer Reseach

  • Asaf Madi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#24110116-2) of the Weizmann Institute of Science. The protocol was approved by the Committee on the Ethics of Animal Experiments of the Weizmann Institute of Science. Every effort was made to minimize suffering.

Copyright

© 2017, Madi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,203
    views
  • 1,163
    downloads
  • 144
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Asaf Madi
  2. Asaf Poran
  3. Eric Shifrut
  4. Shlomit Reich-Zeliger
  5. Erez Greenstein
  6. Irena Zaretsky
  7. Tomer Arnon
  8. Francois Van Laethem
  9. Alfred Singer
  10. Jinghua Lu
  11. Peter D Sun
  12. Irun R Cohen
  13. Nir Friedman
(2017)
T cell receptor repertoires of mice and humans are clustered in similarity networks around conserved public CDR3 sequences
eLife 6:e22057.
https://doi.org/10.7554/eLife.22057

Share this article

https://doi.org/10.7554/eLife.22057

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article Updated

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here, we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions—the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS)—while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal’s choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.