Landscape of histone modifications in a sponge reveals the origin of animal cis-regulatory complexity

  1. Federico Gaiti
  2. Katia Jindrich
  3. Selene L Fernandez-Valverde
  4. Kathrein E Roper
  5. Bernard M Degnan  Is a corresponding author
  6. Miloš Tanurdžić  Is a corresponding author
  1. University of Queensland, Australia
  2. Consejo Nacional de Ciencia y Tecnología, Mexico

Abstract

Combinatorial patterns of histone modifications regulate developmental and cell type-specific gene expression and underpin animal complexity, but it is unclear when this regulatory system evolved. By analysing histone modifications in a morphologically-simple, early branching animal, the sponge Amphimedon queenslandica, we show that the regulatory landscape used by complex bilaterians was already in place at the dawn of animal multicellularity. This includes distal enhancers, repressive chromatin and transcriptional units marked by H3K4me3 that vary with levels of developmental regulation. Strikingly, Amphimedon enhancers are enriched in metazoan-specific microsyntenic units, suggesting that their genomic location is extremely ancient and likely to place constraints on the evolution of surrounding genes. These results suggest that the regulatory foundation for spatiotemporal gene expression evolved prior to the divergence of sponges and eumetazoans, and was necessary for the evolution of animal multicellularity.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Federico Gaiti

    School of Biological Sciences, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Katia Jindrich

    School of Biological Sciences, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Selene L Fernandez-Valverde

    Laboratorio Nacional de Genómica para la Biodiversidad, Consejo Nacional de Ciencia y Tecnología, Irapuato, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  4. Kathrein E Roper

    School of Biological Sciences, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Bernard M Degnan

    School of Biological Sciences, University of Queensland, Brisbane, Australia
    For correspondence
    b.degnan@uq.edu.au
    Competing interests
    The authors declare that no competing interests exist.
  6. Miloš Tanurdžić

    School of Biological Sciences, University of Queensland, Brisbane, Australia
    For correspondence
    m.tanurdzic@uq.edu.au
    Competing interests
    The authors declare that no competing interests exist.

Funding

Australian Research Council (FL110100044)

  • Bernard M Degnan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Robb Krumlauf, Stowers Institute for Medical Research, United States

Version history

  1. Received: October 8, 2016
  2. Accepted: March 27, 2017
  3. Accepted Manuscript published: April 11, 2017 (version 1)
  4. Version of Record published: May 12, 2017 (version 2)

Copyright

© 2017, Gaiti et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,026
    views
  • 942
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Federico Gaiti
  2. Katia Jindrich
  3. Selene L Fernandez-Valverde
  4. Kathrein E Roper
  5. Bernard M Degnan
  6. Miloš Tanurdžić
(2017)
Landscape of histone modifications in a sponge reveals the origin of animal cis-regulatory complexity
eLife 6:e22194.
https://doi.org/10.7554/eLife.22194

Share this article

https://doi.org/10.7554/eLife.22194

Further reading

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Arne Elofsson, Ling Han ... Luca Jovine
    Research Article

    A crucial event in sexual reproduction is when haploid sperm and egg fuse to form a new diploid organism at fertilization. In mammals, direct interaction between egg JUNO and sperm IZUMO1 mediates gamete membrane adhesion, yet their role in fusion remains enigmatic. We used AlphaFold to predict the structure of other extracellular proteins essential for fertilization to determine if they could form a complex that may mediate fusion. We first identified TMEM81, whose gene is expressed by mouse and human spermatids, as a protein having structural homologies with both IZUMO1 and another sperm molecule essential for gamete fusion, SPACA6. Using a set of proteins known to be important for fertilization and TMEM81, we then systematically searched for predicted binary interactions using an unguided approach and identified a pentameric complex involving sperm IZUMO1, SPACA6, TMEM81 and egg JUNO, CD9. This complex is structurally consistent with both the expected topology on opposing gamete membranes and the location of predicted N-glycans not modeled by AlphaFold-Multimer, suggesting that its components could organize into a synapse-like assembly at the point of fusion. Finally, the structural modeling approach described here could be more generally useful to gain insights into transient protein complexes difficult to detect experimentally.

    1. Developmental Biology
    Amandine Jarysta, Abigail LD Tadenev ... Basile Tarchini
    Research Article

    Inhibitory G alpha (GNAI or Gαi) proteins are critical for the polarized morphogenesis of sensory hair cells and for hearing. The extent and nature of their actual contributions remains unclear, however, as previous studies did not investigate all GNAI proteins and included non-physiological approaches. Pertussis toxin can downregulate functionally redundant GNAI1, GNAI2, GNAI3, and GNAO proteins, but may also induce unrelated defects. Here, we directly and systematically determine the role(s) of each individual GNAI protein in mouse auditory hair cells. GNAI2 and GNAI3 are similarly polarized at the hair cell apex with their binding partner G protein signaling modulator 2 (GPSM2), whereas GNAI1 and GNAO are not detected. In Gnai3 mutants, GNAI2 progressively fails to fully occupy the sub-cellular compartments where GNAI3 is missing. In contrast, GNAI3 can fully compensate for the loss of GNAI2 and is essential for hair bundle morphogenesis and auditory function. Simultaneous inactivation of Gnai2 and Gnai3 recapitulates for the first time two distinct types of defects only observed so far with pertussis toxin: (1) a delay or failure of the basal body to migrate off-center in prospective hair cells, and (2) a reversal in the orientation of some hair cell types. We conclude that GNAI proteins are critical for hair cells to break planar symmetry and to orient properly before GNAI2/3 regulate hair bundle morphogenesis with GPSM2.