Signalling: A new trick for an old lipid

  • Download
  • Cite
  • CommentOpen annotations (there are currently 0 annotations on this page).
  1. Hayley Sharpe  Is a corresponding author
  1. University of Cambridge, United Kingdom

Cholesterol is a lipid molecule that is a vital component of all animal cell membranes. It provides structural integrity, which is needed for the membrane to be an effective barrier, and is also required for the production of hormones and vitamin D. These roles mean the production and transport of cholesterol in cells is strictly regulated. This, combined with its poor solubility, has hindered efforts to study its specific molecular roles. Despite this, cholesterol has long been connected to the Hedgehog signalling pathway, which helps to regulate how tissues form in animals and is mutated in several types of cancer.

Now, in eLife, Rajat Rohatgi from Stanford University, Christian Siebold from the University of Oxford and colleagues – including Giovanni Luchetti and Ria Sircar as joint first authors – report a new role for cholesterol in activating the Hedgehog pathway through the receptor protein Smoothened (Luchetti et al., 2016). Similar results have also been recently reported by Adrian Salic and colleagues (Huang et al., 2016).

There are three main components in the Hedgehog pathway that allow cells to send and receive signals: the signalling protein Hedgehog, a transmembrane protein called Patched, and a transmembrane receptor protein called Smoothened. In the absence of Hedgehog, Patched inhibits Smoothened. However, when Hedgehog binds to Patched, this inhibition is blocked and Smoothened is able to activate other Hedgehog pathway components inside the cell. It is thought that Patched and Smoothened communicate using a small molecule rather than by direct contact (Taipale et al., 2002), but it is not clear exactly how this works.

Smoothened possesses two sites at which small molecules are able to bind: one is in its transmembrane domain region and the other is in its cysteine-rich domain on the external surface of the cell. A similar cysteine-rich domain is found in several other proteins, where it is known to be able to bind to lipids (Bazan et al., 2009). Earlier this year, Rohatgi, Siebold and colleagues presented the first complete crystal structure of the transmembrane domain region and cysteine-rich domain of Smoothened (Byrne et al., 2016). Unexpectedly, they found a cholesterol molecule occupied a hydrophobic (water-fearing) pocket in the cysteine-rich domain. Since disrupting cholesterol production in humans and mice affects Smoothened activity (Blassberg et al., 2016; Cooper et al., 2003), this raised the possibility that cholesterol might directly bind to and regulate Smoothened.

Cholesterol is a challenging molecule to work with because it is hydrophobic and can randomly integrate into membranes and modify the activities of many proteins. To overcome this problem both Luchetti et al. and Huang et al. used a chemical called methyl-β-cyclodextrin to deliver cholesterol to cells and show that it directly activates Smoothened through its cysteine-rich domain.

There are many common findings between the two studies. Firstly, both teams demonstrate that cholesterol stimulates Hedgehog signalling via Smoothened with a high degree of specificity. For example, cholestenol and other molecules that are similar to cholesterol were unable to do the same. Both teams were able to rule out the transmembrane domain region as the site of cholesterol binding by showing that cholesterol could activate Smoothened even in the presence of mutations that block the binding of small molecules to this region. By contrast, mutating or completely removing the cysteine-rich domain of Smoothened blocked both the cholesterol and Hedgehog responses. Furthermore, the presence of cholesterol and Hedgehog protein together led to higher levels of Hedgehog signalling activity than the presence of just Hedgehog protein, indicating a possible role for Patched in the regulation of Smoothened by cholesterol (Figure 1).

Model for how cholesterol may regulate the Hedgehog signalling pathway. 

Left: In the absence of Hedgehog protein, the transmembrane protein Patched (purple) inhibits the transmembrane receptor protein Smoothened (blue and grey) via an unknown mechanism. The findings of …

How does cholesterol binding outside the cell translate to signalling within the cell? Luchetti et al. predict, based on previous structures (Byrne et al., 2016), that cholesterol binding to the cysteine-rich domain of Smoothened induces a clockwise rotation with respect to the transmembrane domain region. This change in shape could be sufficient to promote signalling inside the cell.

Together the findings of Luchetti et al. and Huang et al. strongly support a role for cholesterol in activating Smoothened in cells. However, it is worth noting that recent findings from other research groups favour an inhibitory role for sterol molecules instead (Roberts et al., 2016; Sever et al., 2016). Therefore, several critical questions remain. Does cholesterol binding itself alter Smoothened activity, or is cholesterol merely a cofactor that is needed for Smoothened to be activated by another molecule? Does Hedgehog protein affect cholesterol levels and is this mediated through the activity of Patched (Figure 1)? Since most cholesterol is trapped within the cell membrane, it will also be important to understand how cholesterol is able to access the cysteine-rich domain of Smoothened.

Nonetheless, this work reveals a new signalling role for cholesterol in controlling the Smoothened receptor and reiterates the possibility that Hedgehog signalling may have evolved from an ancient lipid-sensing pathway (Hausmann et al., 2009).

References

Article and author information

Author details

  1. Hayley Sharpe

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    hjs49@cam.ac.uk
    Competing interests
    The author declares that no competing interests exist.

Publication history

  1. Version of Record published:

Copyright

© 2016, Sharpe

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Download links

Further reading

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Conor J Howard, Nathan S Abell ... Nathan B Lubock
    Research Article

    Deep Mutational Scanning (DMS) is an emerging method to systematically test the functional consequences of thousands of sequence changes to a protein target in a single experiment. Because of its utility in interpreting both human variant effects and protein structure-function relationships, it holds substantial promise to improve drug discovery and clinical development. However, applications in this domain require improved experimental and analytical methods. To address this need, we report novel DMS methods to precisely and quantitatively interrogate disease-relevant mechanisms, protein-ligand interactions, and assess predicted response to drug treatment. Using these methods, we performed a DMS of the melanocortin-4 receptor (MC4R), a G-protein-coupled receptor (GPCR) implicated in obesity and an active target of drug development efforts. We assessed the effects of >6600 single amino acid substitutions on MC4R’s function across 18 distinct experimental conditions, resulting in >20 million unique measurements. From this, we identified variants that have unique effects on MC4R-mediated Gαs- and Gαq-signaling pathways, which could be used to design drugs that selectively bias MC4R’s activity. We also identified pathogenic variants that are likely amenable to a corrector therapy. Finally, we functionally characterized structural relationships that distinguish the binding of peptide versus small molecule ligands, which could guide compound optimization. Collectively, these results demonstrate that DMS is a powerful method to empower drug discovery and development.

    1. Biochemistry and Chemical Biology
    Meina He, Yongxin Tao ... Wenli Chen
    Research Article

    Copper is an essential enzyme cofactor in bacteria, but excess copper is highly toxic. Bacteria can cope with copper stress by increasing copper resistance and initiating chemorepellent response. However, it remains unclear how bacteria coordinate chemotaxis and resistance to copper. By screening proteins that interacted with the chemotaxis kinase CheA, we identified a copper-binding repressor CsoR that interacted with CheA in Pseudomonas putida. CsoR interacted with the HPT (P1), Dimer (P3), and HATPase_c (P4) domains of CheA and inhibited CheA autophosphorylation, resulting in decreased chemotaxis. The copper-binding of CsoR weakened its interaction with CheA, which relieved the inhibition of chemotaxis by CsoR. In addition, CsoR bound to the promoter of copper-resistance genes to inhibit gene expression, and copper-binding released CsoR from the promoter, leading to increased gene expression and copper resistance. P. putida cells exhibited a chemorepellent response to copper in a CheA-dependent manner, and CsoR inhibited the chemorepellent response to copper. Besides, the CheA-CsoR interaction also existed in proteins from several other bacterial species. Our results revealed a mechanism by which bacteria coordinately regulated chemotaxis and resistance to copper by CsoR.