Epstein-Barr virus ensures B cell survival by uniquely modulating apoptosis at early and late times after infection

  1. Alexander M Price
  2. Joanne Dai
  3. Quentin Bazot
  4. Luv Patel
  5. Pavel A Nikitin
  6. Reza Djavadian
  7. Peter S Winter
  8. Cristina A Salinas
  9. Ashley Perkins Barry
  10. Kris C Wood
  11. Eric C Johannsen
  12. Anthony Letai
  13. Martin J Allday
  14. Micah A Luftig  Is a corresponding author
  1. Duke University School of Medicine, United States
  2. Imperial College London, United Kingdom
  3. Harvard Medical School, United States
  4. University of Wisconsin School of Medicine and Public Health, United States
  5. Duke University, United States

Abstract

Latent Epstein-Barr virus (EBV) infection is causally linked to several human cancers. EBV expresses viral oncogenes that promote cell growth and inhibit the apoptotic response to uncontrolled proliferation. The EBV oncoprotein LMP1 constitutively activates NFB and is critical for survival of EBV-immortalized B cells. However, during early infection EBV induces rapid B cell proliferation with low levels of LMP1 and little apoptosis. Therefore, we sought to define the mechanism of survival in the absence of LMP1/NFB early after infection. We used BH3 profiling to query mitochondrial regulation of apoptosis and defined a transition from uninfected B cells (BCL-2) to early-infected (MCL-1/BCL-2) and immortalized cells (BFL-1). This dynamic change in B cell survival mechanisms is unique to virus-infected cells and relies on regulation of MCL-1 mitochondrial localization and BFL-1 transcription by the viral EBNA3A protein. This study defines a new role for EBNA3A in the suppression of apoptosis with implications for EBV lymphomagenesis.

Data availability

The following previously published data sets were used
    1. Zhao B
    2. Zou JY
    3. Wang H
    4. Johannsen E
    5. Aster J
    6. Bernstein B
    7. Kieff E
    (2011) EBNA2 ChIP-Seq
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE29498).
    1. Shoresh N
    (2011) Histone modifications in LCLs (ENCODE)
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE29611).
    1. Snyder M
    2. Gerstein M
    3. Weissman S
    4. Farnham P
    5. Struhl K
    (2011) TF binding sites in LCLs (ENCODE)
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE31477).

Article and author information

Author details

  1. Alexander M Price

    Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  2. Joanne Dai

    Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  3. Quentin Bazot

    Molecular Virology, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  4. Luv Patel

    Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  5. Pavel A Nikitin

    Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  6. Reza Djavadian

    McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, United States
    Competing interests
    No competing interests declared.
  7. Peter S Winter

    Department of Pharmacology and Cancer Biology, Duke University, Durham, United States
    Competing interests
    No competing interests declared.
  8. Cristina A Salinas

    Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  9. Ashley Perkins Barry

    Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  10. Kris C Wood

    Department of Pharmacology and Cancer Biology, Duke University, Durham, United States
    Competing interests
    No competing interests declared.
  11. Eric C Johannsen

    McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, United States
    Competing interests
    No competing interests declared.
  12. Anthony Letai

    Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    Anthony Letai, Is a paid advisor to, and his laboratory receives research sponsorship from, AbbVie, Astra-Zeneca, and Tetralogic..
  13. Martin J Allday

    Molecular Virology, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  14. Micah A Luftig

    Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States
    For correspondence
    micah.luftig@duke.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2964-1907

Funding

National Cancer Institute (R01-CA140337)

  • Micah A Luftig

American Cancer Society (RSG-13-228-01-MPC)

  • Micah A Luftig

Wellcome (099273/Z/12/Z)

  • Quentin Bazot
  • Martin J Allday

National Institute for Dental and Cranofacial Research (R01-DE025994)

  • Joanne Dai
  • Micah A Luftig

National Institute for Allergy and Infectious Diseases (5P30-AI064518)

  • Micah A Luftig

National Cancer Institute (F31-CA180451)

  • Alexander M Price

National Institute for Dental and Cranofacial Research (R01-DE023939)

  • Eric C Johannsen

National Institute for Allergy and Infectious Diseases (T32-AI078985)

  • Reza Djavadian

National Cancer Institute (R01-CA129974)

  • Anthony Letai

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Stephen P Goff, Howard Hughes Medical Institute, Columbia University, United States

Version history

  1. Received: October 19, 2016
  2. Accepted: April 19, 2017
  3. Accepted Manuscript published: April 20, 2017 (version 1)
  4. Version of Record published: May 10, 2017 (version 2)

Copyright

© 2017, Price et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,532
    views
  • 712
    downloads
  • 53
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexander M Price
  2. Joanne Dai
  3. Quentin Bazot
  4. Luv Patel
  5. Pavel A Nikitin
  6. Reza Djavadian
  7. Peter S Winter
  8. Cristina A Salinas
  9. Ashley Perkins Barry
  10. Kris C Wood
  11. Eric C Johannsen
  12. Anthony Letai
  13. Martin J Allday
  14. Micah A Luftig
(2017)
Epstein-Barr virus ensures B cell survival by uniquely modulating apoptosis at early and late times after infection
eLife 6:e22509.
https://doi.org/10.7554/eLife.22509

Share this article

https://doi.org/10.7554/eLife.22509

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Ting Zhang, Alisa Ambrodji ... Steven M Offer
    Research Article

    Enhancers are critical for regulating tissue-specific gene expression, and genetic variants within enhancer regions have been suggested to contribute to various cancer-related processes, including therapeutic resistance. However, the precise mechanisms remain elusive. Using a well-defined drug-gene pair, we identified an enhancer region for dihydropyrimidine dehydrogenase (DPD, DPYD gene) expression that is relevant to the metabolism of the anti-cancer drug 5-fluorouracil (5-FU). Using reporter systems, CRISPR genome-edited cell models, and human liver specimens, we demonstrated in vitro and vivo that genotype status for the common germline variant (rs4294451; 27% global minor allele frequency) located within this novel enhancer controls DPYD transcription and alters resistance to 5-FU. The variant genotype increases recruitment of the transcription factor CEBPB to the enhancer and alters the level of direct interactions between the enhancer and DPYD promoter. Our data provide insight into the regulatory mechanisms controlling sensitivity and resistance to 5-FU.

    1. Cancer Biology
    2. Epidemiology and Global Health
    Lijun Bian, Zhimin Ma ... Guangfu Jin
    Research Article

    Background:

    Age is the most important risk factor for cancer, but aging rates are heterogeneous across individuals. We explored a new measure of aging-Phenotypic Age (PhenoAge)-in the risk prediction of site-specific and overall cancer.

    Methods:

    Using Cox regression models, we examined the association of Phenotypic Age Acceleration (PhenoAgeAccel) with cancer incidence by genetic risk group among 374,463 participants from the UK Biobank. We generated PhenoAge using chronological age and nine biomarkers, PhenoAgeAccel after subtracting the effect of chronological age by regression residual, and an incidence-weighted overall cancer polygenic risk score (CPRS) based on 20 cancer site-specific polygenic risk scores (PRSs).

    Results:

    Compared with biologically younger participants, those older had a significantly higher risk of overall cancer, with hazard ratios (HRs) of 1.22 (95% confidence interval, 1.18–1.27) in men, and 1.26 (1.22–1.31) in women, respectively. A joint effect of genetic risk and PhenoAgeAccel was observed on overall cancer risk, with HRs of 2.29 (2.10–2.51) for men and 1.94 (1.78–2.11) for women with high genetic risk and older PhenoAge compared with those with low genetic risk and younger PhenoAge. PhenoAgeAccel was negatively associated with the number of healthy lifestyle factors (Beta = –1.01 in men, p<0.001; Beta = –0.98 in women, p<0.001).

    Conclusions:

    Within and across genetic risk groups, older PhenoAge was consistently related to an increased risk of incident cancer with adjustment for chronological age and the aging process could be retarded by adherence to a healthy lifestyle.

    Funding:

    This work was supported by the National Natural Science Foundation of China (82230110, 82125033, 82388102 to GJ; 82273714 to MZ); and the Excellent Youth Foundation of Jiangsu Province (BK20220100 to MZ).