Epstein-Barr virus ensures B cell survival by uniquely modulating apoptosis at early and late times after infection

  1. Alexander M Price
  2. Joanne Dai
  3. Quentin Bazot
  4. Luv Patel
  5. Pavel A Nikitin
  6. Reza Djavadian
  7. Peter S Winter
  8. Cristina A Salinas
  9. Ashley Perkins Barry
  10. Kris C Wood
  11. Eric C Johannsen
  12. Anthony Letai
  13. Martin J Allday
  14. Micah A Luftig  Is a corresponding author
  1. Duke University School of Medicine, United States
  2. Imperial College London, United Kingdom
  3. Harvard Medical School, United States
  4. University of Wisconsin School of Medicine and Public Health, United States
  5. Duke University, United States

Abstract

Latent Epstein-Barr virus (EBV) infection is causally linked to several human cancers. EBV expresses viral oncogenes that promote cell growth and inhibit the apoptotic response to uncontrolled proliferation. The EBV oncoprotein LMP1 constitutively activates NFB and is critical for survival of EBV-immortalized B cells. However, during early infection EBV induces rapid B cell proliferation with low levels of LMP1 and little apoptosis. Therefore, we sought to define the mechanism of survival in the absence of LMP1/NFB early after infection. We used BH3 profiling to query mitochondrial regulation of apoptosis and defined a transition from uninfected B cells (BCL-2) to early-infected (MCL-1/BCL-2) and immortalized cells (BFL-1). This dynamic change in B cell survival mechanisms is unique to virus-infected cells and relies on regulation of MCL-1 mitochondrial localization and BFL-1 transcription by the viral EBNA3A protein. This study defines a new role for EBNA3A in the suppression of apoptosis with implications for EBV lymphomagenesis.

Data availability

The following previously published data sets were used
    1. Zhao B
    2. Zou JY
    3. Wang H
    4. Johannsen E
    5. Aster J
    6. Bernstein B
    7. Kieff E
    (2011) EBNA2 ChIP-Seq
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE29498).
    1. Shoresh N
    (2011) Histone modifications in LCLs (ENCODE)
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE29611).
    1. Snyder M
    2. Gerstein M
    3. Weissman S
    4. Farnham P
    5. Struhl K
    (2011) TF binding sites in LCLs (ENCODE)
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE31477).

Article and author information

Author details

  1. Alexander M Price

    Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  2. Joanne Dai

    Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  3. Quentin Bazot

    Molecular Virology, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  4. Luv Patel

    Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  5. Pavel A Nikitin

    Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  6. Reza Djavadian

    McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, United States
    Competing interests
    No competing interests declared.
  7. Peter S Winter

    Department of Pharmacology and Cancer Biology, Duke University, Durham, United States
    Competing interests
    No competing interests declared.
  8. Cristina A Salinas

    Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  9. Ashley Perkins Barry

    Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  10. Kris C Wood

    Department of Pharmacology and Cancer Biology, Duke University, Durham, United States
    Competing interests
    No competing interests declared.
  11. Eric C Johannsen

    McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, United States
    Competing interests
    No competing interests declared.
  12. Anthony Letai

    Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    Anthony Letai, Is a paid advisor to, and his laboratory receives research sponsorship from, AbbVie, Astra-Zeneca, and Tetralogic..
  13. Martin J Allday

    Molecular Virology, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  14. Micah A Luftig

    Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States
    For correspondence
    micah.luftig@duke.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2964-1907

Funding

National Cancer Institute (R01-CA140337)

  • Micah A Luftig

American Cancer Society (RSG-13-228-01-MPC)

  • Micah A Luftig

Wellcome (099273/Z/12/Z)

  • Quentin Bazot
  • Martin J Allday

National Institute for Dental and Cranofacial Research (R01-DE025994)

  • Joanne Dai
  • Micah A Luftig

National Institute for Allergy and Infectious Diseases (5P30-AI064518)

  • Micah A Luftig

National Cancer Institute (F31-CA180451)

  • Alexander M Price

National Institute for Dental and Cranofacial Research (R01-DE023939)

  • Eric C Johannsen

National Institute for Allergy and Infectious Diseases (T32-AI078985)

  • Reza Djavadian

National Cancer Institute (R01-CA129974)

  • Anthony Letai

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Stephen P Goff, Howard Hughes Medical Institute, Columbia University, United States

Publication history

  1. Received: October 19, 2016
  2. Accepted: April 19, 2017
  3. Accepted Manuscript published: April 20, 2017 (version 1)
  4. Version of Record published: May 10, 2017 (version 2)

Copyright

© 2017, Price et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,031
    Page views
  • 667
    Downloads
  • 30
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexander M Price
  2. Joanne Dai
  3. Quentin Bazot
  4. Luv Patel
  5. Pavel A Nikitin
  6. Reza Djavadian
  7. Peter S Winter
  8. Cristina A Salinas
  9. Ashley Perkins Barry
  10. Kris C Wood
  11. Eric C Johannsen
  12. Anthony Letai
  13. Martin J Allday
  14. Micah A Luftig
(2017)
Epstein-Barr virus ensures B cell survival by uniquely modulating apoptosis at early and late times after infection
eLife 6:e22509.
https://doi.org/10.7554/eLife.22509

Further reading

    1. Cancer Biology
    Ning Yang, Xuebo Lu ... Kangdong Liu
    Research Article Updated

    Human esophageal cancer has a global impact on human health due to its high incidence and mortality. Therefore, there is an urgent need to develop new drugs to treat or prevent the prominent pathological subtype of esophageal cancer, esophageal squamous cell carcinoma (ESCC). Based upon the screening of drugs approved by the Food and Drug Administration, we discovered that Arbidol could effectively inhibit the proliferation of human ESCC in vitro. Next, we conducted a series of cell-based assays and found that Arbidol treatment inhibited the proliferation and colony formation ability of ESCC cells and promoted G1-phase cell cycle arrest. Phosphoproteomics experiments, in vitro kinase assays and pull-down assays were subsequently performed in order to identify the underlying growth inhibitory mechanism. We verified that Arbidol is a potential ataxia telangiectasia and Rad3-related (ATR) inhibitor via binding to ATR kinase to reduce the phosphorylation and activation of minichromosome maintenance protein 2 at Ser108. Finally, we demonstrated Arbidol had the inhibitory effect of ESCC in vivo by a patient-derived xenograft model. All together, Arbidol inhibits the proliferation of ESCC in vitro and in vivo through the DNA replication pathway and is associated with the cell cycle.

    1. Cancer Biology
    2. Computational and Systems Biology
    Pan Cheng, Xin Zhao ... Teresa Davoli
    Research Article

    How cells control gene expression is a fundamental question. The relative contribution of protein-level and RNA-level regulation to this process remains unclear. Here, we perform a proteogenomic analysis of tumors and untransformed cells containing somatic copy number alterations (SCNAs). By revealing how cells regulate RNA and protein abundances of genes with SCNAs, we provide insights into the rules of gene regulation. Protein complex genes have a strong protein-level regulation while non-complex genes have a strong RNA-level regulation. Notable exceptions are plasma membrane protein complex genes, which show a weak protein-level regulation and a stronger RNA-level regulation. Strikingly, we find a strong negative association between the degree of RNA-level and protein-level regulation across genes and cellular pathways. Moreover, genes participating in the same pathway show a similar degree of RNA- and protein-level regulation. Pathways including translation, splicing, RNA processing, and mitochondrial function show a stronger protein-level regulation while cell adhesion and migration pathways show a stronger RNA-level regulation. These results suggest that the evolution of gene regulation is shaped by functional constraints and that many cellular pathways tend to evolve one predominant mechanism of gene regulation at the protein level or at the RNA level.