1. Neuroscience
Download icon

Epigenetic regulation of lateralized fetal spinal gene expression underlies hemispheric asymmetries

  1. Sebastian Ocklenburg  Is a corresponding author
  2. Judith Schmitz
  3. Zahra Moinfar
  4. Dirk Moser
  5. Rena Klose
  6. Stephanie Lor
  7. Georg Kunz
  8. Martin Tegenthoff
  9. Pedro M Faustmann
  10. Clyde Francks
  11. Jörg T Epplen
  12. Robert Kumsta
  13. Onur Güntürkün
  1. Ruhr University Bochum, Germany
  2. St. Johannes Hospital, Germany
  3. University Hospital Bergmannsheil, Germany
  4. Max Planck Institute for Psycholinguistics, Netherlands
Research Article
  • Cited 48
  • Views 32,872
  • Annotations
Cite this article as: eLife 2017;6:e22784 doi: 10.7554/eLife.22784

Abstract

Lateralization is a fundamental principle of nervous system organization but its molecular determinants are mostly unknown. In humans, asymmetric gene expression in the fetal cortex has been suggested as the molecular basis of handedness. However, human fetuses already show considerable asymmetries in arm movements before the motor cortex is functionally linked to the spinal cord, making it more likely that spinal gene expression asymmetries form the molecular basis of handedness. We analyzed genome-wide mRNA expression and DNA methylation in cervical and anterior thoracal spinal cord segments of five human fetuses and show development-dependent gene expression asymmetries. These gene expression asymmetries were epigenetically regulated by miRNA expression asymmetries in the TGF-β signaling pathway and lateralized methylation of CpG islands. Our findings suggest molecular mechanisms for epigenetic regulation within the spinal cord constitute the starting point for handedness, implying a fundamental shift in our understanding of the ontogenesis of hemispheric asymmetries in humans.

Article and author information

Author details

  1. Sebastian Ocklenburg

    Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
    For correspondence
    sebastian.ocklenburg@rub.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5882-3200
  2. Judith Schmitz

    Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Zahra Moinfar

    Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Dirk Moser

    Department of Genetic Psychology, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Rena Klose

    Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Stephanie Lor

    Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Georg Kunz

    Department of Obstetrics and Gynecology, St. Johannes Hospital, Dortmund, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Martin Tegenthoff

    Department of Neurology, University Hospital Bergmannsheil, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Pedro M Faustmann

    Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Clyde Francks

    Department of Language and Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  11. Jörg T Epplen

    Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Robert Kumsta

    Department of Genetic Psychology, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Onur Güntürkün

    Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

Deutsche Forschungsgemeinschaft (Gu227/16-1)

  • Onur Güntürkün

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was approved by the Ethics Committee of the Medical Faculty of the Ruhr-University Bochum (registration number 5056-14). All fetal tissue donors signed written informed consent

Reviewing Editor

  1. Heidi Johansen-Berg, University of Oxford, United Kingdom

Publication history

  1. Received: October 29, 2016
  2. Accepted: January 31, 2017
  3. Accepted Manuscript published: February 1, 2017 (version 1)
  4. Version of Record published: February 7, 2017 (version 2)

Copyright

© 2017, Ocklenburg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 32,872
    Page views
  • 1,944
    Downloads
  • 48
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Cassandra L Hays et al.
    Research Article Updated

    Vision under starlight requires rod photoreceptors to transduce and transmit single-photon responses to the visual system. Small single-photon voltage changes must therefore cause detectable reductions in glutamate release. We found that rods achieve this by employing mechanisms that enhance release regularity and its sensitivity to small voltage changes. At the resting membrane potential in darkness, mouse rods exhibit coordinated and regularly timed multivesicular release events, each consisting of ~17 vesicles and occurring two to three times more regularly than predicted by Poisson statistics. Hyperpolarizing rods to mimic the voltage change produced by a single photon abruptly reduced the probability of multivesicular release nearly to zero with a rebound increase at stimulus offset. Simulations of these release dynamics indicate that this regularly timed, multivesicular release promotes transmission of single-photon responses to post-synaptic rod-bipolar cells. Furthermore, the mechanism is efficient, requiring lower overall release rates than uniquantal release governed by Poisson statistics.

    1. Neuroscience
    Qiang Qiu et al.
    Research Article Updated

    Animals possess an inborn ability to recognize certain odors to avoid predators, seek food, and find mates. Innate odor preference is thought to be genetically hardwired. Here we report that acquisition of innate odor recognition requires spontaneous neural activity and is influenced by sensory experience during early postnatal development. Genetic silencing of mouse olfactory sensory neurons during the critical period has little impact on odor sensitivity, discrimination, and recognition later in life. However, it abolishes innate odor preference and alters the patterns of activation in brain centers. Exposure to innately recognized odors during the critical period abolishes the associated valence in adulthood in an odor-specific manner. The changes are associated with broadened projection of olfactory sensory neurons and expression of axon guidance molecules. Thus, a delicate balance of neural activity is needed during the critical period in establishing innate odor preference and convergent axon input is required to encode innate odor valence.