Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii

  1. Irini Pateraki  Is a corresponding author
  2. Johan Andersen-Ranberg
  3. Niels Bjerg Jensen
  4. Sileshi Gizachew Wubshet
  5. Allison Maree Heskes
  6. Victor Forman
  7. Björn Hallström
  8. Britta Hamberger
  9. Mohammed Saddik Motawia
  10. Carl Erik Olsen
  11. Dan Staerk
  12. Jørgen Hansen
  13. Birger Lindberg Møller
  14. Bjoern Hamberger
  1. University of Copenhagen, Denmark
  2. University of California, Berkeley, United States
  3. Evolva, Denmark
  4. Nofima, Norway
  5. KTH - Royal Institute of Technology, Sweden
  6. Michigan State University, United States

Abstract

Forskolin is a unique structurally complex labdane type diterpenoid used in the treatment of glaucoma and heart failure based on its activity as a cyclic AMP booster. Commercial production of forskolin relies exclusively on extraction from its only known natural source, the plant Coleus forskohlii, in which forskolin accumulates in the root cork. Here we report the discovery of five cytochrome P450s and two acetyltransferases which catalyze a cascade of reactions converting the forskolin precursor 13R-manoyl oxide into forskolin and a diverse array of additional labdane-type diterpenoids. A minimal set of three P450s in combination with a single acetyl transferase was identified that catalyzes the conversion of 13R-manoyl oxide into forskolin as demonstrated by transient expression in Nicotiana benthamiana. The entire pathway for forskolin production from glucose encompassing expression of nine genes was stably integrated into Saccharomyces cerevisiae and afforded forskolin titers of 40 mg/L.

Article and author information

Author details

  1. Irini Pateraki

    Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    eipa@plen.ku.dk
    Competing interests
    Irini Pateraki, Filed international patent600 applications (PCT/DK2015/050020) covering 'Biosynthesis of forskolin and related compounds.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7526-2334
  2. Johan Andersen-Ranberg

    Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    Johan Andersen-Ranberg, Filed international patent600 applications (PCT/DK2015/050020) covering 'Biosynthesis of forskolin and related compounds.
  3. Niels Bjerg Jensen

    Evolva, Copenhagen, Denmark
    Competing interests
    Niels Bjerg Jensen, Filed international patent600 applications (PCT/DK2015/050020) covering 'Biosynthesis of forskolin and related compoundsEmployee of Evolva SA.
  4. Sileshi Gizachew Wubshet

    Nofima, Osloveien, Norway
    Competing interests
    No competing interests declared.
  5. Allison Maree Heskes

    Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2732-5185
  6. Victor Forman

    Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  7. Björn Hallström

    Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  8. Britta Hamberger

    Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States
    Competing interests
    No competing interests declared.
  9. Mohammed Saddik Motawia

    Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  10. Carl Erik Olsen

    Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  11. Dan Staerk

    Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  12. Jørgen Hansen

    Evolva, Copenhagen, Denmark
    Competing interests
    Jørgen Hansen, Employee of Evolva SA.
  13. Birger Lindberg Møller

    Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    Birger Lindberg Møller, Filed international patent600 applications (PCT/DK2015/050020) covering 'Biosynthesis of forskolin and related compounds.
  14. Bjoern Hamberger

    Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States
    Competing interests
    Bjoern Hamberger, Filed international patent600 applications (PCT/DK2015/050020) covering 'Biosynthesis of forskolin and related compounds'.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1249-1807

Funding

Villum Fonden

  • Birger Lindberg Møller

Novo Nordisk

  • Birger Lindberg Møller

European Commission

  • Irini Pateraki

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Pateraki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,069
    views
  • 805
    downloads
  • 96
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Irini Pateraki
  2. Johan Andersen-Ranberg
  3. Niels Bjerg Jensen
  4. Sileshi Gizachew Wubshet
  5. Allison Maree Heskes
  6. Victor Forman
  7. Björn Hallström
  8. Britta Hamberger
  9. Mohammed Saddik Motawia
  10. Carl Erik Olsen
  11. Dan Staerk
  12. Jørgen Hansen
  13. Birger Lindberg Møller
  14. Bjoern Hamberger
(2017)
Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii
eLife 6:e23001.
https://doi.org/10.7554/eLife.23001

Share this article

https://doi.org/10.7554/eLife.23001

Further reading

    1. Biochemistry and Chemical Biology
    Luca Unione, Jesús Jiménez-Barbero
    Insight

    Glycans play an important role in modulating the interactions between natural killer cells and antibodies to fight pathogens and harmful cells.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Kristina Ehring, Sophia Friederike Ehlers ... Kay Grobe
    Research Article

    The Sonic hedgehog (Shh) signaling pathway controls embryonic development and tissue homeostasis after birth. This requires regulated solubilization of dual-lipidated, firmly plasma membrane-associated Shh precursors from producing cells. Although it is firmly established that the resistance-nodulation-division transporter Dispatched (Disp) drives this process, it is less clear how lipidated Shh solubilization from the plasma membrane is achieved. We have previously shown that Disp promotes proteolytic solubilization of Shh from its lipidated terminal peptide anchors. This process, termed shedding, converts tightly membrane-associated hydrophobic Shh precursors into delipidated soluble proteins. We show here that Disp-mediated Shh shedding is modulated by a serum factor that we identify as high-density lipoprotein (HDL). In addition to serving as a soluble sink for free membrane cholesterol, HDLs also accept the cholesterol-modified Shh peptide from Disp. The cholesteroylated Shh peptide is necessary and sufficient for Disp-mediated transfer because artificially cholesteroylated mCherry associates with HDL in a Disp-dependent manner, whereas an N-palmitoylated Shh variant lacking C-cholesterol does not. Disp-mediated Shh transfer to HDL is completed by proteolytic processing of the palmitoylated N-terminal membrane anchor. In contrast to dual-processed soluble Shh with moderate bioactivity, HDL-associated N-processed Shh is highly bioactive. We propose that the purpose of generating different soluble forms of Shh from the dual-lipidated precursor is to tune cellular responses in a tissue-type and time-specific manner.