Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii

  1. Irini Pateraki  Is a corresponding author
  2. Johan Andersen-Ranberg
  3. Niels Bjerg Jensen
  4. Sileshi Gizachew Wubshet
  5. Allison Maree Heskes
  6. Victor Forman
  7. Björn Hallström
  8. Britta Hamberger
  9. Mohammed Saddik Motawia
  10. Carl Erik Olsen
  11. Dan Staerk
  12. Jørgen Hansen
  13. Birger Lindberg Møller
  14. Bjoern Hamberger
  1. University of Copenhagen, Denmark
  2. University of California, Berkeley, United States
  3. Evolva, Denmark
  4. Nofima, Norway
  5. KTH - Royal Institute of Technology, Sweden
  6. Michigan State University, United States

Abstract

Forskolin is a unique structurally complex labdane type diterpenoid used in the treatment of glaucoma and heart failure based on its activity as a cyclic AMP booster. Commercial production of forskolin relies exclusively on extraction from its only known natural source, the plant Coleus forskohlii, in which forskolin accumulates in the root cork. Here we report the discovery of five cytochrome P450s and two acetyltransferases which catalyze a cascade of reactions converting the forskolin precursor 13R-manoyl oxide into forskolin and a diverse array of additional labdane-type diterpenoids. A minimal set of three P450s in combination with a single acetyl transferase was identified that catalyzes the conversion of 13R-manoyl oxide into forskolin as demonstrated by transient expression in Nicotiana benthamiana. The entire pathway for forskolin production from glucose encompassing expression of nine genes was stably integrated into Saccharomyces cerevisiae and afforded forskolin titers of 40 mg/L.

Article and author information

Author details

  1. Irini Pateraki

    Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    eipa@plen.ku.dk
    Competing interests
    Irini Pateraki, Filed international patent600 applications (PCT/DK2015/050020) covering 'Biosynthesis of forskolin and related compounds.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7526-2334
  2. Johan Andersen-Ranberg

    Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    Johan Andersen-Ranberg, Filed international patent600 applications (PCT/DK2015/050020) covering 'Biosynthesis of forskolin and related compounds.
  3. Niels Bjerg Jensen

    Evolva, Copenhagen, Denmark
    Competing interests
    Niels Bjerg Jensen, Filed international patent600 applications (PCT/DK2015/050020) covering 'Biosynthesis of forskolin and related compoundsEmployee of Evolva SA.
  4. Sileshi Gizachew Wubshet

    Nofima, Osloveien, Norway
    Competing interests
    No competing interests declared.
  5. Allison Maree Heskes

    Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2732-5185
  6. Victor Forman

    Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  7. Björn Hallström

    Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  8. Britta Hamberger

    Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States
    Competing interests
    No competing interests declared.
  9. Mohammed Saddik Motawia

    Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  10. Carl Erik Olsen

    Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  11. Dan Staerk

    Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  12. Jørgen Hansen

    Evolva, Copenhagen, Denmark
    Competing interests
    Jørgen Hansen, Employee of Evolva SA.
  13. Birger Lindberg Møller

    Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    Birger Lindberg Møller, Filed international patent600 applications (PCT/DK2015/050020) covering 'Biosynthesis of forskolin and related compounds.
  14. Bjoern Hamberger

    Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States
    Competing interests
    Bjoern Hamberger, Filed international patent600 applications (PCT/DK2015/050020) covering 'Biosynthesis of forskolin and related compounds'.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1249-1807

Funding

Villum Fonden

  • Birger Lindberg Møller

Novo Nordisk

  • Birger Lindberg Møller

European Commission

  • Irini Pateraki

DOE Office of Science (BER DE-FC02-07ER64494)

  • Bjoern Hamberger

Strategic Partnership Grant (15-SPG-Full-3101)

  • Bjoern Hamberger

MSU Foundation

  • Bjoern Hamberger

Michigan State University (startup funding from the Department of Molecular Biology and Biochemistry)

  • Bjoern Hamberger

Michigan State University (AgBioResearch - MICL02454)

  • Bjoern Hamberger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Pateraki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,110
    views
  • 810
    downloads
  • 98
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Irini Pateraki
  2. Johan Andersen-Ranberg
  3. Niels Bjerg Jensen
  4. Sileshi Gizachew Wubshet
  5. Allison Maree Heskes
  6. Victor Forman
  7. Björn Hallström
  8. Britta Hamberger
  9. Mohammed Saddik Motawia
  10. Carl Erik Olsen
  11. Dan Staerk
  12. Jørgen Hansen
  13. Birger Lindberg Møller
  14. Bjoern Hamberger
(2017)
Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii
eLife 6:e23001.
https://doi.org/10.7554/eLife.23001

Share this article

https://doi.org/10.7554/eLife.23001

Further reading

    1. Biochemistry and Chemical Biology
    Shraddha KC, Kenny H Nguyen ... Thomas C Boothby
    Research Article

    The conformational ensemble and function of intrinsically disordered proteins (IDPs) are sensitive to their solution environment. The inherent malleability of disordered proteins, combined with the exposure of their residues, accounts for this sensitivity. One context in which IDPs play important roles that are concomitant with massive changes to the intracellular environment is during desiccation (extreme drying). The ability of organisms to survive desiccation has long been linked to the accumulation of high levels of cosolutes such as trehalose or sucrose as well as the enrichment of IDPs, such as late embryogenesis abundant (LEA) proteins or cytoplasmic abundant heat-soluble (CAHS) proteins. Despite knowing that IDPs play important roles and are co-enriched alongside endogenous, species-specific cosolutes during desiccation, little is known mechanistically about how IDP-cosolute interactions influence desiccation tolerance. Here, we test the notion that the protective function of desiccation-related IDPs is enhanced through conformational changes induced by endogenous cosolutes. We find that desiccation-related IDPs derived from four different organisms spanning two LEA protein families and the CAHS protein family synergize best with endogenous cosolutes during drying to promote desiccation protection. Yet the structural parameters of protective IDPs do not correlate with synergy for either CAHS or LEA proteins. We further demonstrate that for CAHS, but not LEA proteins, synergy is related to self-assembly and the formation of a gel. Our results suggest that functional synergy between IDPs and endogenous cosolutes is a convergent desiccation protection strategy seen among different IDP families and organisms, yet the mechanisms underlying this synergy differ between IDP families.

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.