Memory CD4 T cell subsets are kinetically heterogeneous and replenished from naive T cells at high levels

  1. Graeme Gossel
  2. Thea Hogan
  3. Daniel Cownden
  4. Benedict Seddon  Is a corresponding author
  5. Andrew J Yates  Is a corresponding author
  1. Hunter College, City University of New York, United States
  2. University College London, United Kingdom
  3. University of Glasgow, United Kingdom

Abstract

Characterising the longevity of immunological memory requires establishing the rules underlying the renewal and death of peripheral T cells. However, we lack knowledge of the population structure and how self-renewal and de novo influx contribute to maintenance of memory compartments. Here, we characterise the kinetics and structure of murine CD4 T cell memory subsets by measuring the rates of influx of new cells and using detailed timecourses of DNA labelling that also distinguish the behaviour of recently divided and quiescent cells. We find that both effector and central memory CD4 T cells comprise subpopulations with highly divergent rates of turnover, and show that inflows of new cells sourced from the naive pool strongly impact estimates of memory cell lifetimes and division rates. We also demonstrate that the maintenance of CD4 T cell memory subsets in healthy mice is unexpectedly and strikingly reliant on this replenishment.

Article and author information

Author details

  1. Graeme Gossel

    Department of Physics and Astronomy, Hunter College, City University of New York, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Thea Hogan

    Institute of Immunity and Transplantation, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel Cownden

    Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Benedict Seddon

    Institute of Immunity and Transplantation, University College London, London, United Kingdom
    For correspondence
    benedict.seddon@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  5. Andrew J Yates

    Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
    For correspondence
    andrew.yates@glasgow.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4606-4483

Funding

National Institutes of Health (R01 AI093870)

  • Andrew J Yates

Arthritis Research UK

  • Andrew J Yates

Medical Research Council (MC-PC-13055)

  • Thea Hogan
  • Benedict Seddon

National Science Foundation (1548123)

  • Graeme Gossel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed in accordance with UK Home Office regulations, project license number PPL70-8310.

Copyright

© 2017, Gossel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,513
    views
  • 1,005
    downloads
  • 66
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.23013

Further reading

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Jose Borghans, Ruy M Ribeiro
    Insight

    Mathematical modeling reveals that long-term immunological memory is maintained in a manner that is even more dynamic than previously thought.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Fangluo Chen, Dylan C Sarver ... G William Wong
    Research Article

    Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.