Structure of Fam20A reveals a pseudokinase featuring unique disulfide pattern and inverted ATP-binding

  1. Jixin Cui
  2. Qinyu Zhu
  3. Hui Zhang
  4. Michael A Cianfrocco
  5. Andres E Leschziner
  6. Jack E Dixon  Is a corresponding author
  7. Junyu Xiao  Is a corresponding author
  1. University of California, San Diego, United States
  2. Peking University, China

Abstract

Mutations in FAM20A cause tooth enamel defects known as Amelogenesis Imperfecta (AI) and renal calcification. We previously showed that Fam20A is a secretory pathway pseudokinase and allosterically activates the physiological casein kinase Fam20C to phosphorylate secreted proteins important for biomineralization (Cui et al., 2015). Here we report the nucleotide-free and ATP-bound structures of Fam20A. Fam20A exhibits a distinct disulfide bond pattern mediated by a unique insertion region. Loss of this insertion due to abnormal mRNA splicing interferes with the structure and function of Fam20A, resulting in AI. Fam20A binds ATP in the absence of divalent cations, and strikingly, ATP is bound in an inverted orientation compared to other kinases. Fam20A forms a dimer in the crystal, and residues in the dimer interface are critical for Fam20C activation. Together, these results provide structural insights into the function of Fam20A and shed light on the mechanism by which Fam20A mutations cause disease.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Jixin Cui

    Department of Pharmacology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Qinyu Zhu

    Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Hui Zhang

    Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael A Cianfrocco

    Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Andres E Leschziner

    Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jack E Dixon

    Department of Pharmacology, University of California, San Diego, La Jolla, United States
    For correspondence
    jedixon@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
  7. Junyu Xiao

    The State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, China
    For correspondence
    junyuxiao@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1822-1701

Funding

National Natural Science Foundation of China (31570735)

  • Junyu Xiao

National Key Research & Development Plan (2016YFC0906000)

  • Junyu Xiao

National Institutes of Health (DK018849)

  • Jack E Dixon

National Institutes of Health (DK018024)

  • Jack E Dixon

Human Frontier Science Program (LT000659/2013-L)

  • Jixin Cui

Damon Runyon Cancer Research Foundation (DRG 2171-13)

  • Michael A Cianfrocco

Howard Hughes Medical Institute

  • Jack E Dixon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Tony Hunter, Salk Institute for Biological Studies, United States

Version history

  1. Received: December 8, 2016
  2. Accepted: April 20, 2017
  3. Accepted Manuscript published: April 22, 2017 (version 1)
  4. Version of Record published: May 2, 2017 (version 2)

Copyright

© 2017, Cui et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,791
    views
  • 404
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jixin Cui
  2. Qinyu Zhu
  3. Hui Zhang
  4. Michael A Cianfrocco
  5. Andres E Leschziner
  6. Jack E Dixon
  7. Junyu Xiao
(2017)
Structure of Fam20A reveals a pseudokinase featuring unique disulfide pattern and inverted ATP-binding
eLife 6:e23990.
https://doi.org/10.7554/eLife.23990

Share this article

https://doi.org/10.7554/eLife.23990

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Richard Sejour, Janet Leatherwood ... Bruce Futcher
    Research Article

    Previously, Tuller et al. found that the first 30–50 codons of the genes of yeast and other eukaryotes are slightly enriched for rare codons. They argued that this slowed translation, and was adaptive because it queued ribosomes to prevent collisions. Today, the translational speeds of different codons are known, and indeed rare codons are translated slowly. We re-examined this 5’ slow translation ‘ramp.’ We confirm that 5’ regions are slightly enriched for rare codons; in addition, they are depleted for downstream Start codons (which are fast), with both effects contributing to slow 5’ translation. However, we also find that the 5’ (and 3’) ends of yeast genes are poorly conserved in evolution, suggesting that they are unstable and turnover relatively rapidly. When a new 5’ end forms de novo, it is likely to include codons that would otherwise be rare. Because evolution has had a relatively short time to select against these codons, 5’ ends are typically slightly enriched for rare, slow codons. Opposite to the expectation of Tuller et al., we show by direct experiment that genes with slowly translated codons at the 5’ end are expressed relatively poorly, and that substituting faster synonymous codons improves expression. Direct experiment shows that slow codons do not prevent downstream ribosome collisions. Further informatic studies suggest that for natural genes, slow 5’ ends are correlated with poor gene expression, opposite to the expectation of Tuller et al. Thus, we conclude that slow 5’ translation is a ‘spandrel’--a non-adaptive consequence of something else, in this case, the turnover of 5’ ends in evolution, and it does not improve translation.

    1. Biochemistry and Chemical Biology
    Boglarka Zambo, Evelina Edelweiss ... Gergo Gogl
    Research Article

    Truncation of the protein-protein interaction SH3 domain of the membrane remodeling Bridging Integrator 1 (BIN1, Amphiphysin 2) protein leads to centronuclear myopathy. Here, we assessed the impact of a set of naturally observed, previously uncharacterized BIN1 SH3 domain variants using conventional in vitro and cell-based assays monitoring the BIN1 interaction with dynamin 2 (DNM2) and identified potentially harmful ones that can be also tentatively connected to neuromuscular disorders. However, SH3 domains are typically promiscuous and it is expected that other, so far unknown partners of BIN1 exist besides DNM2, that also participate in the development of centronuclear myopathy. In order to shed light on these other relevant interaction partners and to get a holistic picture of the pathomechanism behind BIN1 SH3 domain variants, we used affinity interactomics. We identified hundreds of new BIN1 interaction partners proteome-wide, among which many appear to participate in cell division, suggesting a critical role of BIN1 in the regulation of mitosis. Finally, we show that the identified BIN1 mutations indeed cause proteome-wide affinity perturbation, signifying the importance of employing unbiased affinity interactomic approaches.