Abstract

Strict L-chiral rejection through Gly-cisPro motif during chiral proofreading underlies inability of D-aminoacyl-tRNA deacylase (DTD) to discriminate between D-amino acids and achiral glycine. The consequent Gly-tRNAGly 'misediting paradox' is resolved by EF-Tu in the cell. Here, we show that DTD’s active site architecture can efficiently edit mischarged Gly-tRNAAla species four orders of magnitude more efficiently than even AlaRS, the only ubiquitous cellular checkpoint known for clearing the error. Also, DTD knockout in AlaRS editing-defective background causes pronounced toxicity in Escherichia coli even at low glycine levels which is alleviated by alanine supplementation. We further demonstrate that DTD positively selects the universally invariant tRNAAla-specific G3•U70. Moreover, DTD’s activity on non-cognate Gly-tRNAAla is conserved across all bacteria and eukaryotes, suggesting DTD’s key cellular role as a glycine deacylator. Our study thus reveals a hitherto unknown function of DTD in cracking the universal mechanistic dilemma encountered by AlaRS, and its physiological importance.

Article and author information

Author details

  1. Komal Ishwar Pawar

    CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Katta Suma

    CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Ayshwarya Seenivasan

    CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Santosh Kumar Kuncha

    CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Satya Brata Routh

    CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
    Competing interests
    The authors declare that no competing interests exist.
  6. Shobha P Kruparani

    CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
    Competing interests
    The authors declare that no competing interests exist.
  7. Rajan Sankaranarayanan

    CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
    For correspondence
    sankar@ccmb.res.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4524-9953

Funding

Council of Scientific and Industrial Research (12th Five Year Plan Project BSC0113)

  • Rajan Sankaranarayanan

Science and Engineering Research Board (JC Bose Fellowship)

  • Rajan Sankaranarayanan

Department of Biotechnology , Ministry of Science and Technology (Centre of Excellence)

  • Rajan Sankaranarayanan

Council of Scientific and Industrial Research (Research Fellowship)

  • Komal Ishwar Pawar
  • Satya Brata Routh

Department of Biotechnology , Ministry of Science and Technology (Research Associateship)

  • Katta Suma

Department of Biotechnology , Ministry of Science and Technology (INSPIRE Fellowship)

  • Santosh Kumar Kuncha

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Pawar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,461
    views
  • 394
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Komal Ishwar Pawar
  2. Katta Suma
  3. Ayshwarya Seenivasan
  4. Santosh Kumar Kuncha
  5. Satya Brata Routh
  6. Shobha P Kruparani
  7. Rajan Sankaranarayanan
(2017)
Role of D-aminoacyl-tRNA deacylase beyond chiral proofreading as a cellular defense against glycine mischarging by AlaRS
eLife 6:e24001.
https://doi.org/10.7554/eLife.24001

Share this article

https://doi.org/10.7554/eLife.24001

Further reading

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Federico A Vignale, Andrea Hernandez Garcia ... Adrian G Turjanski
    Research Article

    Yerba mate (YM, Ilex paraguariensis) is an economically important crop marketed for the elaboration of mate, the third-most widely consumed caffeine-containing infusion worldwide. Here, we report the first genome assembly of this species, which has a total length of 1.06 Gb and contains 53,390 protein-coding genes. Comparative analyses revealed that the large YM genome size is partly due to a whole-genome duplication (Ip-α) during the early evolutionary history of Ilex, in addition to the hexaploidization event (γ) shared by core eudicots. Characterization of the genome allowed us to clone the genes encoding methyltransferase enzymes that catalyse multiple reactions required for caffeine production. To our surprise, this species has converged upon a different biochemical pathway compared to that of coffee and tea. In order to gain insight into the structural basis for the convergent enzyme activities, we obtained a crystal structure for the terminal enzyme in the pathway that forms caffeine. The structure reveals that convergent solutions have evolved for substrate positioning because different amino acid residues facilitate a different substrate orientation such that efficient methylation occurs in the independently evolved enzymes in YM and coffee. While our results show phylogenomic constraint limits the genes coopted for convergence of caffeine biosynthesis, the X-ray diffraction data suggest structural constraints are minimal for the convergent evolution of individual reactions.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.