1. Plant Biology
  2. Developmental Biology
Download icon

Autocrine regulation of stomatal differentiation potential by EPF1 and ERECTA-LIKE1 ligand-receptor signaling

  1. Xingyun Qi
  2. Soon-KI Han
  3. Jonathan H Dang
  4. Jacqueline M Garrick
  5. Masaki Ito
  6. Alexander K Hofstetter
  7. Keiko U Torii  Is a corresponding author
  1. Howard Hughes Medical Institute, University of Washington, United States
  2. Nagoya University, Japan
Research Article
  • Cited 21
  • Views 2,372
  • Annotations
Cite this article as: eLife 2017;6:e24102 doi: 10.7554/eLife.24102

Abstract

Development of stomata, valves on the plant epidermis for optimal gas exchange and water control, is fine-tuned by multiple signaling peptides with unique, overlapping, or antagonistic activities. EPIDERMAL PATTERNING FACTOR1 (EPF1) is a founding member of the secreted peptide ligands enforcing stomatal patterning. Yet, its exact role remains unclear. Here, we report that EPF1 and its primary receptor ERECTA-LIKE1 (ERL1) target MUTE, a transcription factor specifying the proliferation-to-differentiation switch within the stomatal cell lineages. In turn, MUTE directly induces ERL1. The absolute co-expression of ERL1 and MUTE, with the co-presence of EPF1, triggers autocrine inhibition of stomatal fate. During normal stomatal development, this autocrine inhibition prevents extra symmetric divisions of stomatal precursors likely owing to excessive MUTE activity. Our study reveals the unexpected role of self-inhibition as a mechanism for ensuring proper stomatal development and suggests an intricate signal buffering mechanism underlying plant tissue patterning.

Article and author information

Author details

  1. Xingyun Qi

    Howard Hughes Medical Institute, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Soon-KI Han

    Howard Hughes Medical Institute, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jonathan H Dang

    Howard Hughes Medical Institute, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jacqueline M Garrick

    Howard Hughes Medical Institute, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Masaki Ito

    Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Alexander K Hofstetter

    Howard Hughes Medical Institute, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Keiko U Torii

    Howard Hughes Medical Institute, University of Washington, Seattle, United States
    For correspondence
    ktorii@u.washington.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6168-427X

Funding

Howard Hughes Medical Institute

  • Keiko U Torii

Gordon and Betty Moore Foundation (GBMF3035)

  • Keiko U Torii

National Science Foundation (MCB-0855659)

  • Keiko U Torii

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sheila McCormick, University of California-Berkeley, United States

Publication history

  1. Received: December 9, 2016
  2. Accepted: March 6, 2017
  3. Accepted Manuscript published: March 7, 2017 (version 1)
  4. Accepted Manuscript updated: March 14, 2017 (version 2)
  5. Version of Record published: March 20, 2017 (version 3)

Copyright

© 2017, Qi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,372
    Page views
  • 651
    Downloads
  • 21
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Plant Biology
    Pengxiang Fan et al.
    Research Article Updated

    Plants produce phylogenetically and spatially restricted, as well as structurally diverse specialized metabolites via multistep metabolic pathways. Hallmarks of specialized metabolic evolution include enzymatic promiscuity and recruitment of primary metabolic enzymes and examples of genomic clustering of pathway genes. Solanaceae glandular trichomes produce defensive acylsugars, with sidechains that vary in length across the family. We describe a tomato gene cluster on chromosome 7 involved in medium chain acylsugar accumulation due to trichome specific acyl-CoA synthetase and enoyl-CoA hydratase genes. This cluster co-localizes with a tomato steroidal alkaloid gene cluster and is syntenic to a chromosome 12 region containing another acylsugar pathway gene. We reconstructed the evolutionary events leading to this gene cluster and found that its phylogenetic distribution correlates with medium chain acylsugar accumulation across the Solanaceae. This work reveals insights into the dynamics behind gene cluster evolution and cell-type specific metabolite diversity.

    1. Plant Biology
    Kasey Markel
    Short Report

    Gagliano et al. (Learning by association in plants, 2016) reported associative learning in pea plants. Associative learning has long been considered a behavior performed only by animals, making this claim particularly newsworthy and interesting. In the experiment, plants were trained in Y-shaped mazes for 3 days with fans and lights attached at the top of the maze. Training consisted of wind consistently preceding light from either the same or the opposite arm of the maze. When plant growth forced a decision between the two arms of the maze, fans alone were able to influence growth direction, whereas the growth direction of untrained plants was not affected by fans. However, a replication of their protocol failed to demonstrate the same result, calling for further verification and study before mainstream acceptance of this paradigm-shifting phenomenon. This replication attempt used a larger sample size and fully blinded analysis.