1. Plant Biology
  2. Developmental Biology
Download icon

Autocrine regulation of stomatal differentiation potential by EPF1 and ERECTA-LIKE1 ligand-receptor signaling

  1. Xingyun Qi
  2. Soon-KI Han
  3. Jonathan H Dang
  4. Jacqueline M Garrick
  5. Masaki Ito
  6. Alexander K Hofstetter
  7. Keiko U Torii  Is a corresponding author
  1. Howard Hughes Medical Institute, University of Washington, United States
  2. Nagoya University, Japan
Research Article
  • Cited 27
  • Views 2,626
  • Annotations
Cite this article as: eLife 2017;6:e24102 doi: 10.7554/eLife.24102

Abstract

Development of stomata, valves on the plant epidermis for optimal gas exchange and water control, is fine-tuned by multiple signaling peptides with unique, overlapping, or antagonistic activities. EPIDERMAL PATTERNING FACTOR1 (EPF1) is a founding member of the secreted peptide ligands enforcing stomatal patterning. Yet, its exact role remains unclear. Here, we report that EPF1 and its primary receptor ERECTA-LIKE1 (ERL1) target MUTE, a transcription factor specifying the proliferation-to-differentiation switch within the stomatal cell lineages. In turn, MUTE directly induces ERL1. The absolute co-expression of ERL1 and MUTE, with the co-presence of EPF1, triggers autocrine inhibition of stomatal fate. During normal stomatal development, this autocrine inhibition prevents extra symmetric divisions of stomatal precursors likely owing to excessive MUTE activity. Our study reveals the unexpected role of self-inhibition as a mechanism for ensuring proper stomatal development and suggests an intricate signal buffering mechanism underlying plant tissue patterning.

Article and author information

Author details

  1. Xingyun Qi

    Howard Hughes Medical Institute, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Soon-KI Han

    Howard Hughes Medical Institute, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jonathan H Dang

    Howard Hughes Medical Institute, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jacqueline M Garrick

    Howard Hughes Medical Institute, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Masaki Ito

    Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Alexander K Hofstetter

    Howard Hughes Medical Institute, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Keiko U Torii

    Howard Hughes Medical Institute, University of Washington, Seattle, United States
    For correspondence
    ktorii@u.washington.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6168-427X

Funding

Howard Hughes Medical Institute

  • Keiko U Torii

Gordon and Betty Moore Foundation (GBMF3035)

  • Keiko U Torii

National Science Foundation (MCB-0855659)

  • Keiko U Torii

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sheila McCormick, University of California-Berkeley, United States

Publication history

  1. Received: December 9, 2016
  2. Accepted: March 6, 2017
  3. Accepted Manuscript published: March 7, 2017 (version 1)
  4. Accepted Manuscript updated: March 14, 2017 (version 2)
  5. Version of Record published: March 20, 2017 (version 3)

Copyright

© 2017, Qi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,626
    Page views
  • 696
    Downloads
  • 27
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Ecology
    2. Plant Biology
    Ella Katz et al.
    Research Article

    Plants produce diverse metabolites to cope with the challenges presented by complex and ever-changing environments. These challenges drive the diversification of specialized metabolites within and between plant species. However, we are just beginning to understand how frequently new alleles arise controlling specialized metabolite diversity and how the geographic distribution of these alleles may be structured by ecological and demographic pressures. Here we measure the variation in specialized metabolites across a population of 797 natural Arabidopsis thaliana accessions. We show a combination of geography, environmental parameters, demography, and different genetic processes all combine to influence the specific chemotypes and their distribution. This showed that causal loci in specialized metabolism contain frequent independently generated alleles with patterns suggesting potential within species convergence. This provides a new perspective about the complexity of the selective forces and mechanisms that shape the generation and distribution of allelic variation that may influence local adaptation.

    1. Chromosomes and Gene Expression
    2. Plant Biology
    Matthew T Parker et al.
    Research Article

    Genes involved in disease resistance are some of the fastest evolving and most diverse components of genomes. Large numbers of nucleotide-binding, leucine-rich repeat (NLR) genes are found in plant genomes and are required for disease resistance. However, NLRs can trigger autoimmunity, disrupt beneficial microbiota or reduce fitness. It is therefore crucial to understand how NLRs are controlled. Here we show that the RNA-binding protein FPA mediates widespread premature cleavage and polyadenylation of NLR transcripts, thereby controlling their functional expression and impacting immunity. Using long-read Nanopore direct RNA sequencing, we resolved the complexity of NLR transcript processing and gene annotation. Our results uncover a co-transcriptional layer of NLR control with implications for understanding the regulatory and evolutionary dynamics of NLRs in the immune responses of plants.