Abstract

Although most nephron segments contain one type of epithelial cell, the collecting ducts consists of at least two: intercalated (IC) and principal (PC) cells, which regulate acid-base and salt-water homeostasis, respectively. In adult kidneys, these cells are organized in rosettes suggesting functional interactions. Genetic studies in mouse revealed that transcription factor Tfcp2l1 coordinates IC and PC development. Tfcp2l1 induces the expression of IC specific genes, including specific H+-ATPase subunits and Jag1. Jag1 in turn, initiates Notch signaling in PCs but inhibits Notch signaling in ICs. Tfcp2l1 inactivation deletes ICs, whereas Jag1 inactivation results in the forfeiture of discrete IC and PC identities. Thus, Tfcp2l1 is a critical regulator of IC-PC patterning, acting cell-autonomously in ICs, and non-cell-autonomously in PCs. As a result, Tfcp2l1 regulates the diversification of cell types which is the central characteristic of 'salt and pepper' epithelia and distinguishes the collecting duct from all other nephron segments.

Data availability

The following data sets were generated
    1. Werth et al.
    (2017) Identification of Tfcp2l1 target genes in the mouse kidney
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE87769).
    1. Werth M
    2. Barasch J
    (2017) Tfcp2l1 controls cellular patterning of the collecting duct.
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE85325).
    1. Werth M
    2. Barasch J
    (2017) Genome wide map of Tfcp2l1 binding sites from mouse kidney
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE87752).
The following previously published data sets were used

Article and author information

Author details

  1. Max Werth

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0169-6233
  2. Kai M Schmidt-Ott

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Thomas Leete

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Andong Qiu

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christian Hinze

    Max Delbruck Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Melanie Viltard

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Neal Paragas

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Carrie J Shawber

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Wenqiang Yu

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Peter Lee

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Xia Chen

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Abby Sarkar

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Weiyi Mu

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Alexander Rittenberg

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Chyuan-Sheng Lin

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Jan Kitajewski

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Qais Al-Awqati

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7141-1040
  18. Jonathan Barasch

    Columbia University, New York, United States
    For correspondence
    jmb4@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6723-9548

Funding

National Institutes of Health (RO1DK073462 RO1DK092684)

  • Jonathan Barasch

March of Dimes Foundation (Research Grant)

  • Jonathan Barasch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were approved by the Institutional Animal Care and Use Committee (IACUC) at Columbia. Protocol # AC-AAAH7404.

Copyright

© 2017, Werth et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,247
    views
  • 512
    downloads
  • 64
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Max Werth
  2. Kai M Schmidt-Ott
  3. Thomas Leete
  4. Andong Qiu
  5. Christian Hinze
  6. Melanie Viltard
  7. Neal Paragas
  8. Carrie J Shawber
  9. Wenqiang Yu
  10. Peter Lee
  11. Xia Chen
  12. Abby Sarkar
  13. Weiyi Mu
  14. Alexander Rittenberg
  15. Chyuan-Sheng Lin
  16. Jan Kitajewski
  17. Qais Al-Awqati
  18. Jonathan Barasch
(2017)
Transcription factor TFCP2L1 patterns cells in the mouse kidney collecting ducts
eLife 6:e24265.
https://doi.org/10.7554/eLife.24265

Share this article

https://doi.org/10.7554/eLife.24265

Further reading

    1. Cell Biology
    Yajun Zhai, Peiyi Liu ... Gongzheng Hu
    Research Article

    Discovering new strategies to combat the multidrug-resistant bacteria constitutes a major medical challenge of our time. Previously, artesunate (AS) has been reported to exert antibacterial enhancement activity in combination with β-lactam antibiotics via inhibition of the efflux pump AcrB. However, combination of AS and colistin (COL) revealed a weak synergistic effect against a limited number of strains, and few studies have further explored its possible mechanism of synergistic action. In this article, we found that AS and EDTA could strikingly enhance the antibacterial effects of COL against mcr-1- and mcr-1+ Salmonella strains either in vitro or in vivo, when used in triple combination. The excellent bacteriostatic effect was primarily related to the increased cell membrane damage, accumulation of toxic compounds and inhibition of MCR-1. The potential binding sites of AS to MCR-1 (THR283, SER284, and TYR287) were critical for its inhibition of MCR-1 activity. Additionally, we also demonstrated that the CheA of chemosensory system and virulence-related protein SpvD were critical for the bacteriostatic synergistic effects of the triple combination. Selectively targeting CheA, SpvD, or MCR using the natural compound AS could be further investigated as an attractive strategy for the treatment of Salmonella infection. Collectively, our work opens new avenues toward the potentiation of COL and reveals an alternative drug combination strategy to overcome COL-resistant bacterial infections.

    1. Cell Biology
    Tamás Visnovitz, Dorina Lenzinger ... Edit I Buzas
    Short Report

    Recent studies showed an unexpected complexity of extracellular vesicle (EV) biogenesis pathways. We previously found evidence that human colorectal cancer cells in vivo release large multivesicular body-like structures en bloc. Here, we tested whether this large EV type is unique to colorectal cancer cells. We found that all cell types we studied (including different cell lines and cells in their original tissue environment) released multivesicular large EVs (MV-lEVs). We also demonstrated that upon spontaneous rupture of the limiting membrane of the MV-lEVs, their intraluminal vesicles (ILVs) escaped to the extracellular environment by a ‘torn bag mechanism’. We proved that the MV-lEVs were released by ectocytosis of amphisomes (hence, we termed them amphiectosomes). Both ILVs of amphiectosomes and small EVs separated from conditioned media were either exclusively CD63 or LC3B positive. According to our model, upon fusion of multivesicular bodies with autophagosomes, fragments of the autophagosomal inner membrane curl up to form LC3B positive ILVs of amphisomes, while CD63 positive small EVs are of multivesicular body origin. Our data suggest a novel common release mechanism for small EVs, distinct from the exocytosis of multivesicular bodies or amphisomes, as well as the small ectosome release pathway.