Transcription factor TFCP2L1 patterns cells in the mouse kidney collecting ducts

Abstract

Although most nephron segments contain one type of epithelial cell, the collecting ducts consists of at least two: intercalated (IC) and principal (PC) cells, which regulate acid-base and salt-water homeostasis, respectively. In adult kidneys, these cells are organized in rosettes suggesting functional interactions. Genetic studies in mouse revealed that transcription factor Tfcp2l1 coordinates IC and PC development. Tfcp2l1 induces the expression of IC specific genes, including specific H+-ATPase subunits and Jag1. Jag1 in turn, initiates Notch signaling in PCs but inhibits Notch signaling in ICs. Tfcp2l1 inactivation deletes ICs, whereas Jag1 inactivation results in the forfeiture of discrete IC and PC identities. Thus, Tfcp2l1 is a critical regulator of IC-PC patterning, acting cell-autonomously in ICs, and non-cell-autonomously in PCs. As a result, Tfcp2l1 regulates the diversification of cell types which is the central characteristic of 'salt and pepper' epithelia and distinguishes the collecting duct from all other nephron segments.

Data availability

The following data sets were generated
    1. Werth et al.
    (2017) Identification of Tfcp2l1 target genes in the mouse kidney
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE87769).
    1. Werth M
    2. Barasch J
    (2017) Tfcp2l1 controls cellular patterning of the collecting duct.
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE85325).
    1. Werth M
    2. Barasch J
    (2017) Genome wide map of Tfcp2l1 binding sites from mouse kidney
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE87752).
The following previously published data sets were used

Article and author information

Author details

  1. Max Werth

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0169-6233
  2. Kai M Schmidt-Ott

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Thomas Leete

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Andong Qiu

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christian Hinze

    Max Delbruck Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Melanie Viltard

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Neal Paragas

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Carrie J Shawber

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Wenqiang Yu

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Peter Lee

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Xia Chen

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Abby Sarkar

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Weiyi Mu

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Alexander Rittenberg

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Chyuan-Sheng Lin

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Jan Kitajewski

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Qais Al-Awqati

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7141-1040
  18. Jonathan Barasch

    Columbia University, New York, United States
    For correspondence
    jmb4@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6723-9548

Funding

National Institutes of Health (RO1DK073462 RO1DK092684)

  • Jonathan Barasch

March of Dimes Foundation (Research Grant)

  • Jonathan Barasch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were approved by the Institutional Animal Care and Use Committee (IACUC) at Columbia. Protocol # AC-AAAH7404.

Reviewing Editor

  1. Roy Zent, Vanderbilt University Medical Center, United States

Publication history

  1. Received: December 19, 2016
  2. Accepted: June 3, 2017
  3. Accepted Manuscript published: June 3, 2017 (version 1)
  4. Accepted Manuscript updated: June 13, 2017 (version 2)
  5. Version of Record published: June 26, 2017 (version 3)
  6. Version of Record updated: June 27, 2017 (version 4)

Copyright

© 2017, Werth et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,820
    Page views
  • 471
    Downloads
  • 39
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Max Werth
  2. Kai M Schmidt-Ott
  3. Thomas Leete
  4. Andong Qiu
  5. Christian Hinze
  6. Melanie Viltard
  7. Neal Paragas
  8. Carrie J Shawber
  9. Wenqiang Yu
  10. Peter Lee
  11. Xia Chen
  12. Abby Sarkar
  13. Weiyi Mu
  14. Alexander Rittenberg
  15. Chyuan-Sheng Lin
  16. Jan Kitajewski
  17. Qais Al-Awqati
  18. Jonathan Barasch
(2017)
Transcription factor TFCP2L1 patterns cells in the mouse kidney collecting ducts
eLife 6:e24265.
https://doi.org/10.7554/eLife.24265

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Sumedha Dahal, Humaira Siddiqua ... Sathees C Raghavan
    Research Article Updated

    Having its genome makes the mitochondrion a unique and semiautonomous organelle within cells. Mammalian mitochondrial DNA (mtDNA) is a double-stranded closed circular molecule of about 16 kb coding for 37 genes. Mutations, including deletions in the mitochondrial genome, can culminate in different human diseases. Mapping the deletion junctions suggests that the breakpoints are generally seen at hotspots. ‘9 bp deletion’ (8271–8281), seen in the intergenic region of cytochrome c oxidase II/tRNALys, is the most common mitochondrial deletion. While it is associated with several diseases like myopathy, dystonia, and hepatocellular carcinoma, it has also been used as an evolutionary marker. However, the mechanism responsible for its fragility is unclear. In the current study, we show that Endonuclease G, a mitochondrial nuclease responsible for nonspecific cleavage of nuclear DNA during apoptosis, can induce breaks at sequences associated with ‘9 bp deletion’ when it is present on a plasmid or in the mitochondrial genome. Through a series of in vitro and intracellular studies, we show that Endonuclease G binds to G-quadruplex structures formed at the hotspot and induces DNA breaks. Therefore, we uncover a new role for Endonuclease G in generating mtDNA deletions, which depends on the formation of G4 DNA within the mitochondrial genome. In summary, we identify a novel property of Endonuclease G, besides its role in apoptosis and the recently described ‘elimination of paternal mitochondria during fertilisation.

    1. Cell Biology
    Amanda E Brandon, Lewin Small ... Gregory J Cooney
    Research Article Updated

    Obesity is generally associated with insulin resistance in liver and muscle and increased risk of developing type 2 diabetes, however there is a population of obese people that remain insulin sensitive. Similarly, recent work suggests that mice fed high carbohydrate diets can become obese without apparent glucose intolerance. To investigate this phenomenon further, we fed mice either a high fat (Hi-F) or high starch (Hi-ST) diet and measured adiposity, glucose tolerance, insulin sensitivity, and tissue lipids compared to control mice fed a standard laboratory chow. Both Hi-ST and Hi-F mice accumulated a similar amount of fat and tissue triglyceride compared to chow-fed mice. However, while Hi-F diet mice developed glucose intolerance as well as liver and muscle insulin resistance (assessed via euglycaemic/hyperinsulinaemic clamp), obese Hi-ST mice maintained glucose tolerance and insulin action similar to lean, chow-fed controls. This preservation of insulin action despite obesity in Hi-ST mice was associated with differences in de novo lipogenesis and levels of C22:0 ceramide in liver and C18:0 ceramide in muscle. This indicates that dietary manipulation can influence insulin action independently of the level of adiposity and that the presence of specific ceramide species correlates with these differences.