Abstract

Ion channel gating is essential for cellular homeostasis and is tightly controlled. In some eukaryotic and most bacterial ligand-gated K+ channels, RCK domains regulate ion fluxes. Until now, a single regulatory mechanism has been proposed for all RCK-regulated channels, involving signal transduction from the RCK domain to the gating area. Here we present an inactive ADP-bound structure of KtrAB from Vibrio alginolyticus, determined by cryo-electron microscopy, which, combined with EPR spectroscopy and molecular dynamics simulations, uncovers a novel regulatory mechanism for ligand-induced action at a distance. Exchange of activating ATP to inactivating ADP triggers short helical segments in the K+-translocating KtrB dimer to organize into two long helices that penetrate deeply into the regulatory RCK domains, thus connecting nucleotide binding sites and ion gates. As KtrAB and its homolog TrkAH have been implicated as bacterial pathogenicity factors, the discovery of this functionally relevant inactive conformation may advance structure-guided drug development.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Marina Diskowski

    Institute of Biochemistry, Goethe-University, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Ahmad Reza Mehdipour

    Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Dorith Wunnicke

    Institute of Biochemistry, Goethe-University, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Deryck J Mills

    Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Vedrana Mikusevic

    Institute of Biochemistry, Goethe-University, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Natalie Bärland

    Institute of Biochemistry, Goethe-University, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Jan Hoffmann

    Institute of Physical and Theoretical Chemistry, Goethe-University, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Nina Morgner

    Institute of Physical and Theoretical Chemistry, Goethe-University, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1872-490X
  9. Heinz-Jürgen Steinhoff

    Department of Physics, University of Osnabrück, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Gerhard Hummer

    Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Janet Vonck

    Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
    For correspondence
    janet.vonck@biophys.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5659-8863
  12. Inga Haenelt

    Institute of Biochemistry, Goethe-University, Frankfurt, Germany
    For correspondence
    haenelt@biochem.uni-frankfurt.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1495-3163

Funding

Deutsche Forschungsgemeinschaft (HA 6322/3-1)

  • Inga Haenelt

Max Planck Society

  • Ahmad Reza Mehdipour
  • Deryck J Mills
  • Gerhard Hummer
  • Janet Vonck

Deutsche Forschungsgemeinschaft (HA 6322/2-1)

  • Inga Haenelt

Deutsche Forschungsgemeinschaft (SFB 807)

  • Nina Morgner
  • Gerhard Hummer
  • Inga Haenelt

Deutsche Forschungsgemeinschaft (CEF Macromolecular Complexes)

  • Ahmad Reza Mehdipour
  • Inga Haenelt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kenton J Swartz, National Institutes of Health, United States

Version history

  1. Received: December 15, 2016
  2. Accepted: May 14, 2017
  3. Accepted Manuscript published: May 15, 2017 (version 1)
  4. Accepted Manuscript updated: May 16, 2017 (version 2)
  5. Version of Record published: May 30, 2017 (version 3)

Copyright

© 2017, Diskowski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,874
    views
  • 375
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marina Diskowski
  2. Ahmad Reza Mehdipour
  3. Dorith Wunnicke
  4. Deryck J Mills
  5. Vedrana Mikusevic
  6. Natalie Bärland
  7. Jan Hoffmann
  8. Nina Morgner
  9. Heinz-Jürgen Steinhoff
  10. Gerhard Hummer
  11. Janet Vonck
  12. Inga Haenelt
(2017)
Helical jackknives control the gates of the double-pore K+ uptake system KtrAB
eLife 6:e24303.
https://doi.org/10.7554/eLife.24303

Share this article

https://doi.org/10.7554/eLife.24303

Further reading

    1. Biochemistry and Chemical Biology
    2. Plant Biology
    Henning Mühlenbeck, Yuko Tsutsui ... Cyril Zipfel
    Research Article

    Transmembrane signaling by plant receptor kinases (RKs) has long been thought to involve reciprocal trans-phosphorylation of their intracellular kinase domains. The fact that many of these are pseudokinase domains, however, suggests that additional mechanisms must govern RK signaling activation. Non-catalytic signaling mechanisms of protein kinase domains have been described in metazoans, but information is scarce for plants. Recently, a non-catalytic function was reported for the leucine-rich repeat (LRR)-RK subfamily XIIa member EFR (elongation factor Tu receptor) and phosphorylation-dependent conformational changes were proposed to regulate signaling of RKs with non-RD kinase domains. Here, using EFR as a model, we describe a non-catalytic activation mechanism for LRR-RKs with non-RD kinase domains. EFR is an active kinase, but a kinase-dead variant retains the ability to enhance catalytic activity of its co-receptor kinase BAK1/SERK3 (brassinosteroid insensitive 1-associated kinase 1/somatic embryogenesis receptor kinase 3). Applying hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis and designing homology-based intragenic suppressor mutations, we provide evidence that the EFR kinase domain must adopt its active conformation in order to activate BAK1 allosterically, likely by supporting αC-helix positioning in BAK1. Our results suggest a conformational toggle model for signaling, in which BAK1 first phosphorylates EFR in the activation loop to stabilize its active conformation, allowing EFR in turn to allosterically activate BAK1.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Katarzyna Marta Zoltowska, Utpal Das ... Lucía Chávez-Gutiérrez
    Research Article

    Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer’s disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We conducted kinetic analyses of γ-secretase activity in cell-free systems in the presence of Aβ, as well as cell-based and ex vivo assays in neuronal cell lines, neurons, and brain synaptosomes to assess the impact of Aβ on γ-secretases. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17–42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75, and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.