Host-selected mutations converging on a global regulator drive an adaptive leap by bacteria to symbiosis

  1. Molly Sabrina Pankey
  2. Randi L Foxall
  3. Ian M Ster
  4. Lauren A Perry
  5. Brian M Schuster
  6. Rachel A Donner
  7. Matthew Coyle
  8. Vaughn S Cooper
  9. Cheryl A Whistler  Is a corresponding author
  1. University of New Hampshire, United States
  2. University of Pittsburgh School of Medicine, United States

Abstract

Host immune and physical barriers protect against pathogens but also impede the establishment of essential symbiotic partnerships. To reveal mechanisms by which beneficial organisms adapt to circumvent host defenses, we experimentally evolved ecologically distinct bioluminescent Vibrio fischeri through Euprymna scolopes squid light organs. Serial squid passaging of bacteria produced eight distinct mutations in the binK sensor kinase gene that conferred an exceptional selective advantage demonstrated through both empirical and theoretical analysis. Squid-adaptive binK alleles promoted colonization and immune evasion that was mediated by cell-associated matrices including symbiotic polysaccharide (Syp) and cellulose. binK variation also altered quorum sensing, raising the threshold for luminescence induction. Preexisting coordinate regulation of symbiosis traits by BinK presented an efficient solution where altered BinK function was the key to unlock multiple colonization barriers. These results identify a genetic basis for microbial adaptability and underscore the importance of hosts as selective agents that shape emergent symbiont populations.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Molly Sabrina Pankey

    Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7061-9613
  2. Randi L Foxall

    Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ian M Ster

    Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Lauren A Perry

    Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Brian M Schuster

    Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Rachel A Donner

    Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Matthew Coyle

    Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Vaughn S Cooper

    Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Cheryl A Whistler

    Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
    For correspondence
    cheryl.whistler@unh.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2301-2069

Funding

National Science Foundation (IOS-1258099)

  • Vaughn S Cooper
  • Cheryl A Whistler

U.S. Department of Agriculture (216015)

  • Cheryl A Whistler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Edward G Ruby, University of Hawaii, United States

Version history

  1. Received: December 19, 2016
  2. Accepted: April 23, 2017
  3. Accepted Manuscript published: April 27, 2017 (version 1)
  4. Version of Record published: June 9, 2017 (version 2)

Copyright

© 2017, Pankey et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,529
    views
  • 559
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Molly Sabrina Pankey
  2. Randi L Foxall
  3. Ian M Ster
  4. Lauren A Perry
  5. Brian M Schuster
  6. Rachel A Donner
  7. Matthew Coyle
  8. Vaughn S Cooper
  9. Cheryl A Whistler
(2017)
Host-selected mutations converging on a global regulator drive an adaptive leap by bacteria to symbiosis
eLife 6:e24414.
https://doi.org/10.7554/eLife.24414

Share this article

https://doi.org/10.7554/eLife.24414

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Li Min, Fanqin Bu ... Shutian Zhang
    Research Article

    It takes more than 20 years for normal colorectal mucosa to develop into metastatic carcinoma. The long time window provides a golden opportunity for early detection to terminate the malignant progression. Here, we aim to enable liquid biopsy of T1a stage colorectal cancer (CRC) and precancerous advanced adenoma (AA) by profiling circulating small extracellular vesicle (sEV)-derived RNAs. We exhibited a full RNA landscape for the circulating sEVs isolated from 60 participants. A total of 58,333 annotated RNAs were detected from plasma sEVs, among which 1,615 and 888 sEV-RNAs were found differentially expressed in plasma from T1a stage CRC and AA compared to normal controls (NC). Then we further categorized these sEV-RNAs into six modules by a weighted gene coexpression network analysis and constructed a 60-gene t-SNE model consisting of the top 10 RNAs of each module that could well distinguish T1a stage CRC/AA from NC samples. Some sEV-RNAs were also identified as indicators of specific endoscopic and morphological features of different colorectal lesions. The top-ranked biomarkers were further verified by RT-qPCR, proving that these candidate sEV-RNAs successfully identified T1a stage CRC/AA from NC in another cohort of 124 participants. Finally, we adopted different algorithms to improve the performance of RT-qPCR-based models and successfully constructed an optimized classifier with 79.3% specificity and 99.0% sensitivity. In conclusion, circulating sEVs of T1a stage CRC and AA patients have distinct RNA profiles, which successfully enable the detection of both T1a stage CRC and AA via liquid biopsy.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Erik Toraason, Alina Salagean ... Diana E Libuda
    Research Article

    The preservation of genome integrity during sperm and egg development is vital for reproductive success. During meiosis, the tumor suppressor BRCA1/BRC-1 and structural maintenance of chromosomes 5/6 (SMC-5/6) complex genetically interact to promote high fidelity DNA double strand break (DSB) repair, but the specific DSB repair outcomes these proteins regulate remain unknown. Using genetic and cytological methods to monitor resolution of DSBs with different repair partners in Caenorhabditis elegans, we demonstrate that both BRC-1 and SMC-5 repress intersister crossover recombination events. Sequencing analysis of conversion tracts from homolog-independent DSB repair events further indicates that BRC-1 regulates intersister/intrachromatid noncrossover conversion tract length. Moreover, we find that BRC-1 specifically inhibits error prone repair of DSBs induced at mid-pachytene. Finally, we reveal functional interactions of BRC-1 and SMC-5/6 in regulating repair pathway engagement: BRC-1 is required for localization of recombinase proteins to DSBs in smc-5 mutants and enhances DSB repair defects in smc-5 mutants by repressing theta-mediated end joining (TMEJ). These results are consistent with a model in which some functions of BRC-1 act upstream of SMC-5/6 to promote recombination and inhibit error-prone DSB repair, while SMC-5/6 acts downstream of BRC-1 to regulate the formation or resolution of recombination intermediates. Taken together, our study illuminates the coordinate interplay of BRC-1 and SMC-5/6 to regulate DSB repair outcomes in the germline.