Host-selected mutations converging on a global regulator drive an adaptive leap by bacteria to symbiosis

  1. Molly Sabrina Pankey
  2. Randi L Foxall
  3. Ian M Ster
  4. Lauren A Perry
  5. Brian M Schuster
  6. Rachel A Donner
  7. Matthew Coyle
  8. Vaughn S Cooper
  9. Cheryl A Whistler  Is a corresponding author
  1. University of New Hampshire, United States
  2. University of Pittsburgh School of Medicine, United States

Abstract

Host immune and physical barriers protect against pathogens but also impede the establishment of essential symbiotic partnerships. To reveal mechanisms by which beneficial organisms adapt to circumvent host defenses, we experimentally evolved ecologically distinct bioluminescent Vibrio fischeri through Euprymna scolopes squid light organs. Serial squid passaging of bacteria produced eight distinct mutations in the binK sensor kinase gene that conferred an exceptional selective advantage demonstrated through both empirical and theoretical analysis. Squid-adaptive binK alleles promoted colonization and immune evasion that was mediated by cell-associated matrices including symbiotic polysaccharide (Syp) and cellulose. binK variation also altered quorum sensing, raising the threshold for luminescence induction. Preexisting coordinate regulation of symbiosis traits by BinK presented an efficient solution where altered BinK function was the key to unlock multiple colonization barriers. These results identify a genetic basis for microbial adaptability and underscore the importance of hosts as selective agents that shape emergent symbiont populations.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Molly Sabrina Pankey

    Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7061-9613
  2. Randi L Foxall

    Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ian M Ster

    Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Lauren A Perry

    Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Brian M Schuster

    Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Rachel A Donner

    Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Matthew Coyle

    Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Vaughn S Cooper

    Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Cheryl A Whistler

    Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
    For correspondence
    cheryl.whistler@unh.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2301-2069

Funding

National Science Foundation (IOS-1258099)

  • Vaughn S Cooper
  • Cheryl A Whistler

U.S. Department of Agriculture (216015)

  • Cheryl A Whistler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Pankey et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,587
    views
  • 569
    downloads
  • 48
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Molly Sabrina Pankey
  2. Randi L Foxall
  3. Ian M Ster
  4. Lauren A Perry
  5. Brian M Schuster
  6. Rachel A Donner
  7. Matthew Coyle
  8. Vaughn S Cooper
  9. Cheryl A Whistler
(2017)
Host-selected mutations converging on a global regulator drive an adaptive leap by bacteria to symbiosis
eLife 6:e24414.
https://doi.org/10.7554/eLife.24414

Share this article

https://doi.org/10.7554/eLife.24414

Further reading

    1. Genetics and Genomics
    Xiuling Cao, Xiang Wu ... Beidong Liu
    Research Article

    Due to proteostasis stress induced by aging or disease, misfolded proteins can form toxic intermediate species of aggregates and eventually mature into less toxic inclusion bodies (IBs). Here, using a yeast imaging-based screen, we identified 84 potential synphilin-1 (SY1) IB regulators and isolated the conserved sphingolipid metabolic components in the most enriched groups. Furthermore, we show that, in both yeast cells and mammalian cells, SY1 IBs are associated with mitochondria. Pharmacological inhibition of the sphingolipid metabolism pathway or knockout of its key genes results in a delayed IB maturation and increased SY1 cytotoxicity. We postulate that SY1 IB matures by association with the mitochondrion membrane, and that sphingolipids stimulate the maturation via their membrane-modulating function and thereby protecting cells from SY1 cytotoxicity. Our findings identify a conserved cellular component essential for IB maturation and suggest a mechanism by which cells may detoxify the pathogenic protein aggregates through forming mitochondrion-associated IBs.

    1. Genetics and Genomics
    Jorge Blanco Mendana, Margaret Donovan ... Daryl M Gohl
    Tools and Resources

    Advances in single-cell sequencing technologies have provided novel insights into the dynamics of gene expression and cellular heterogeneity within tissues and have enabled the construction of transcriptomic cell atlases. However, linking anatomical information to transcriptomic data and positively identifying the cell types that correspond to gene expression clusters in single-cell sequencing data sets remains a challenge. We describe a straightforward genetic barcoding approach that takes advantage of the powerful genetic tools in Drosophila to allow in vivo tagging of defined cell populations. This method, called Targeted Genetically-Encoded Multiplexing (TaG-EM), involves inserting a DNA barcode just upstream of the polyadenylation site in a Gal4-inducible UAS-GFP construct so that the barcode sequence can be read out during single-cell sequencing, labeling a cell population of interest. By creating many such independently barcoded fly strains, TaG-EM enables positive identification of cell types in cell atlas projects, identification of multiplet droplets, and barcoding of experimental timepoints, conditions, and replicates. Furthermore, we demonstrate that TaG-EM barcodes can be read out using next-generation sequencing to facilitate population-scale behavioral measurements. Thus, TaG-EM has the potential to enable large-scale behavioral screens in addition to improving the ability to multiplex and reliably annotate single-cell transcriptomic experiments.