Structural Basis of Protein Translocation by the Vps4-Vta1 AAA ATPase
Abstract
Many important cellular membrane fission reactions are driven by ESCRT pathways, which culminate in disassembly of ESCRT-III polymers by the AAA ATPase Vps4. We report a 4.3 Å resolution cryo-EM structure of the active Vps4 hexamer with its cofactor Vta1, ADP•BeFx, and an ESCRT-III substrate peptide. Four Vps4 subunits form a helix whose interfaces are consistent with ATP-binding, is stabilized by Vta1, and binds the substrate peptide. The fifth subunit approximately continues this helix but appears to be dissociating. The final Vps4 subunit completes a notched-washer configuration as if transitioning between the ends of the helix. We propose that ATP binding propagates growth at one end of the helix while hydrolysis promotes disassembly at the other end, so that Vps4 'walks' along ESCRT-III until it encounters the ordered N-terminal domain to destabilize the ESCRT-III lattice. This model may be generally applicable to other protein-translocating AAA ATPases.
Data availability
-
Vps4-Vta1 complexPublicly available at the RCSB Protein Data Bank (accession no: 5UIE).
-
Vps4-Vta1 complexPublicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8549).
-
Vps4-Vta1 complex_sharpened mapPublicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8550).
-
Vps4-HCP hexamerPublicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8551).
-
Vps4-Vta1 complex_VSL_APublicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8552).
-
Vps4-Vta1 complex_VSL_BPublicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8553).
-
Vps4-Vta1 complex_VSL_CPublicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8554).
-
Vps4-Vta1 complex_VSL_DPublicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8555).
-
Vps4-Vta1 complex_VSL_EPublicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8556).
-
Vps4-Vta1 complex_VSL_FPublicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8557).
-
Vps4-Vta1 complex, State 3 of subunitFPublicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8570).
-
Vps4-Vta1 complex, State 2 of subunitFPublicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8571).
-
Vps4-Vta1 complex, State 1 of subunitFPublicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8572).
Article and author information
Author details
Funding
National Institutes of Health (P50 GM082545)
- Nicole Monroe
- Han Han
- Peter S Shen
- Wesley I Sundquist
- Christopher P Hill
National Institutes of Health (Microbial Pathogenesis Training Grant T32 AI055434)
- Nicole Monroe
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2017, Monroe et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 6,719
- views
-
- 1,254
- downloads
-
- 131
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
- Computational and Systems Biology
Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.
-
- Biochemistry and Chemical Biology
- Structural Biology and Molecular Biophysics
The two identical motor domains (heads) of dimeric kinesin-1 move in a hand-over-hand process along a microtubule, coordinating their ATPase cycles such that each ATP hydrolysis is tightly coupled to a step and enabling the motor to take many steps without dissociating. The neck linker, a structural element that connects the two heads, has been shown to be essential for head–head coordination; however, which kinetic step(s) in the chemomechanical cycle is ‘gated’ by the neck linker remains unresolved. Here, we employed pre-steady-state kinetics and single-molecule assays to investigate how the neck-linker conformation affects kinesin’s motility cycle. We show that the backward-pointing configuration of the neck linker in the front kinesin head confers higher affinity for microtubule, but does not change ATP binding and dissociation rates. In contrast, the forward-pointing configuration of the neck linker in the rear kinesin head decreases the ATP dissociation rate but has little effect on microtubule dissociation. In combination, these conformation-specific effects of the neck linker favor ATP hydrolysis and dissociation of the rear head prior to microtubule detachment of the front head, thereby providing a kinetic explanation for the coordinated walking mechanism of dimeric kinesin.