1. Biochemistry and Chemical Biology
  2. Structural Biology and Molecular Biophysics
Download icon

Structural Basis of Protein Translocation by the Vps4-Vta1 AAA ATPase

  1. Nicole Monroe
  2. Han Han
  3. Peter S Shen  Is a corresponding author
  4. Wesley I Sundquist  Is a corresponding author
  5. Christopher P Hill  Is a corresponding author
  1. University of Utah School of Medicine, United States
Research Article
  • Cited 74
  • Views 4,525
  • Annotations
Cite this article as: eLife 2017;6:e24487 doi: 10.7554/eLife.24487

Abstract

Many important cellular membrane fission reactions are driven by ESCRT pathways, which culminate in disassembly of ESCRT-III polymers by the AAA ATPase Vps4. We report a 4.3 Å resolution cryo-EM structure of the active Vps4 hexamer with its cofactor Vta1, ADP•BeFx, and an ESCRT-III substrate peptide. Four Vps4 subunits form a helix whose interfaces are consistent with ATP-binding, is stabilized by Vta1, and binds the substrate peptide. The fifth subunit approximately continues this helix but appears to be dissociating. The final Vps4 subunit completes a notched-washer configuration as if transitioning between the ends of the helix. We propose that ATP binding propagates growth at one end of the helix while hydrolysis promotes disassembly at the other end, so that Vps4 'walks' along ESCRT-III until it encounters the ordered N-terminal domain to destabilize the ESCRT-III lattice. This model may be generally applicable to other protein-translocating AAA ATPases.

Data availability

The following data sets were generated
    1. Monroe N
    2. Han H
    3. Shen PS
    4. Sundquist WI
    5. Hill CP
    (2017) Vps4-Vta1 complex
    Publicly available at the RCSB Protein Data Bank (accession no: 5UIE).
    1. Monroe N
    2. Han H
    3. Shen PS
    4. Sundquist WI
    5. Hill CP
    (2017) Vps4-Vta1 complex
    Publicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8549).
    1. Monroe N
    2. Han H
    3. Shen PS
    4. Sundquist WI
    5. Hill CP
    (2017) Vps4-Vta1 complex_sharpened map
    Publicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8550).
    1. Monroe N
    2. Han H
    3. Shen PS
    4. Sundquist WI
    5. Hill CP
    (2017) Vps4-HCP hexamer
    Publicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8551).
    1. Monroe N
    2. Han H
    3. Shen PS
    4. Sundquist WI
    5. Hill CP
    (2017) Vps4-Vta1 complex_VSL_A
    Publicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8552).
    1. Monroe N
    2. Han H
    3. Shen PS
    4. Sundquist WI
    5. Hill CP
    (2017) Vps4-Vta1 complex_VSL_B
    Publicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8553).
    1. Monroe N
    2. Han H
    3. Shen PS
    4. Sundquist WI
    5. Hill CP
    (2017) Vps4-Vta1 complex_VSL_C
    Publicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8554).
    1. Monroe N
    2. Han H
    3. Shen PS
    4. Sundquist WI
    5. Hill CP
    (2017) Vps4-Vta1 complex_VSL_D
    Publicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8555).
    1. Monroe N
    2. Han H
    3. Shen PS
    4. Sundquist WI
    5. Hill CP
    (2017) Vps4-Vta1 complex_VSL_E
    Publicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8556).
    1. Monroe N
    2. Han H
    3. Shen PS
    4. Sundquist WI
    5. Hill CP
    (2017) Vps4-Vta1 complex_VSL_F
    Publicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8557).
    1. Monroe N
    2. Han H
    3. Shen PS
    4. Sundquist WI
    5. Hill CP
    (2017) Vps4-Vta1 complex, State 3 of subunitF
    Publicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8570).
    1. Monroe N
    2. Han H
    3. Shen PS
    4. Sundquist WI
    5. Hill CP
    (2017) Vps4-Vta1 complex, State 2 of subunitF
    Publicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8571).
    1. Monroe N
    2. Han H
    3. Shen PS
    4. Sundquist WI
    5. Hill CP
    (2017) Vps4-Vta1 complex, State 1 of subunitF
    Publicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8572).

Article and author information

Author details

  1. Nicole Monroe

    Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7678-4997
  2. Han Han

    Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  3. Peter S Shen

    Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    For correspondence
    peter.shen@biochem.utah.edu
    Competing interests
    No competing interests declared.
  4. Wesley I Sundquist

    Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    For correspondence
    wes@biochem.utah.edu
    Competing interests
    Wesley I Sundquist, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9988-6021
  5. Christopher P Hill

    Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    For correspondence
    chris@biochem.utah.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6796-7740

Funding

National Institutes of Health (P50 GM082545)

  • Nicole Monroe
  • Han Han
  • Peter S Shen
  • Wesley I Sundquist
  • Christopher P Hill

National Institutes of Health (Microbial Pathogenesis Training Grant T32 AI055434)

  • Nicole Monroe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sriram Subramaniam, National Cancer Institute, United States

Publication history

  1. Received: December 21, 2016
  2. Accepted: April 4, 2017
  3. Accepted Manuscript published: April 5, 2017 (version 1)
  4. Version of Record published: May 2, 2017 (version 2)

Copyright

© 2017, Monroe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,525
    Page views
  • 1,035
    Downloads
  • 74
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    Xavier Portillo et al.
    Research Article Updated

    An RNA polymerase ribozyme that has been the subject of extensive directed evolution efforts has attained the ability to synthesize complex functional RNAs, including a full-length copy of its own evolutionary ancestor. During the course of evolution, the catalytic core of the ribozyme has undergone a major structural rearrangement, resulting in a novel tertiary structural element that lies in close proximity to the active site. Through a combination of site-directed mutagenesis, structural probing, and deep sequencing analysis, the trajectory of evolution was seen to involve the progressive stabilization of the new structure, which provides the basis for improved catalytic activity of the ribozyme. Multiple paths to the new structure were explored by the evolving population, converging upon a common solution. Tertiary structural remodeling of RNA is known to occur in nature, as evidenced by the phylogenetic analysis of extant organisms, but this type of structural innovation had not previously been observed in an experimental setting. Despite prior speculation that the catalytic core of the ribozyme had become trapped in a narrow local fitness optimum, the evolving population has broken through to a new fitness locale, raising the possibility that further improvement of polymerase activity may be achievable.

    1. Biochemistry and Chemical Biology
    Gajanan S Patil et al.
    Research Article Updated

    Fatty acyl-AMP ligases (FAALs) channelize fatty acids towards biosynthesis of virulent lipids in mycobacteria and other pharmaceutically or ecologically important polyketides and lipopeptides in other microbes. They do so by bypassing the ubiquitous coenzyme A-dependent activation and rely on the acyl carrier protein-tethered 4′-phosphopantetheine (holo-ACP). The molecular basis of how FAALs strictly reject chemically identical and abundant acceptors like coenzyme A (CoA) and accept holo-ACP unlike other members of the ANL superfamily remains elusive. We show that FAALs have plugged the promiscuous canonical CoA-binding pockets and utilize highly selective alternative binding sites. These alternative pockets can distinguish adenosine 3′,5′-bisphosphate-containing CoA from holo-ACP and thus FAALs can distinguish between CoA and holo-ACP. These exclusive features helped identify the omnipresence of FAAL-like proteins and their emergence in plants, fungi, and animals with unconventional domain organizations. The universal distribution of FAALs suggests that they are parallelly evolved with FACLs for ensuring a CoA-independent activation and redirection of fatty acids towards lipidic metabolites.