Abstract

Many important cellular membrane fission reactions are driven by ESCRT pathways, which culminate in disassembly of ESCRT-III polymers by the AAA ATPase Vps4. We report a 4.3 Å resolution cryo-EM structure of the active Vps4 hexamer with its cofactor Vta1, ADP•BeFx, and an ESCRT-III substrate peptide. Four Vps4 subunits form a helix whose interfaces are consistent with ATP-binding, is stabilized by Vta1, and binds the substrate peptide. The fifth subunit approximately continues this helix but appears to be dissociating. The final Vps4 subunit completes a notched-washer configuration as if transitioning between the ends of the helix. We propose that ATP binding propagates growth at one end of the helix while hydrolysis promotes disassembly at the other end, so that Vps4 'walks' along ESCRT-III until it encounters the ordered N-terminal domain to destabilize the ESCRT-III lattice. This model may be generally applicable to other protein-translocating AAA ATPases.

Data availability

The following data sets were generated
    1. Monroe N
    2. Han H
    3. Shen PS
    4. Sundquist WI
    5. Hill CP
    (2017) Vps4-Vta1 complex
    Publicly available at the RCSB Protein Data Bank (accession no: 5UIE).
    1. Monroe N
    2. Han H
    3. Shen PS
    4. Sundquist WI
    5. Hill CP
    (2017) Vps4-Vta1 complex
    Publicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8549).
    1. Monroe N
    2. Han H
    3. Shen PS
    4. Sundquist WI
    5. Hill CP
    (2017) Vps4-Vta1 complex_sharpened map
    Publicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8550).
    1. Monroe N
    2. Han H
    3. Shen PS
    4. Sundquist WI
    5. Hill CP
    (2017) Vps4-HCP hexamer
    Publicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8551).
    1. Monroe N
    2. Han H
    3. Shen PS
    4. Sundquist WI
    5. Hill CP
    (2017) Vps4-Vta1 complex_VSL_A
    Publicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8552).
    1. Monroe N
    2. Han H
    3. Shen PS
    4. Sundquist WI
    5. Hill CP
    (2017) Vps4-Vta1 complex_VSL_B
    Publicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8553).
    1. Monroe N
    2. Han H
    3. Shen PS
    4. Sundquist WI
    5. Hill CP
    (2017) Vps4-Vta1 complex_VSL_C
    Publicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8554).
    1. Monroe N
    2. Han H
    3. Shen PS
    4. Sundquist WI
    5. Hill CP
    (2017) Vps4-Vta1 complex_VSL_D
    Publicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8555).
    1. Monroe N
    2. Han H
    3. Shen PS
    4. Sundquist WI
    5. Hill CP
    (2017) Vps4-Vta1 complex_VSL_E
    Publicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8556).
    1. Monroe N
    2. Han H
    3. Shen PS
    4. Sundquist WI
    5. Hill CP
    (2017) Vps4-Vta1 complex_VSL_F
    Publicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8557).
    1. Monroe N
    2. Han H
    3. Shen PS
    4. Sundquist WI
    5. Hill CP
    (2017) Vps4-Vta1 complex, State 3 of subunitF
    Publicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8570).
    1. Monroe N
    2. Han H
    3. Shen PS
    4. Sundquist WI
    5. Hill CP
    (2017) Vps4-Vta1 complex, State 2 of subunitF
    Publicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8571).
    1. Monroe N
    2. Han H
    3. Shen PS
    4. Sundquist WI
    5. Hill CP
    (2017) Vps4-Vta1 complex, State 1 of subunitF
    Publicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-8572).

Article and author information

Author details

  1. Nicole Monroe

    Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7678-4997
  2. Han Han

    Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  3. Peter S Shen

    Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    For correspondence
    peter.shen@biochem.utah.edu
    Competing interests
    No competing interests declared.
  4. Wesley I Sundquist

    Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    For correspondence
    wes@biochem.utah.edu
    Competing interests
    Wesley I Sundquist, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9988-6021
  5. Christopher P Hill

    Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    For correspondence
    chris@biochem.utah.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6796-7740

Funding

National Institutes of Health (P50 GM082545)

  • Nicole Monroe
  • Han Han
  • Peter S Shen
  • Wesley I Sundquist
  • Christopher P Hill

National Institutes of Health (Microbial Pathogenesis Training Grant T32 AI055434)

  • Nicole Monroe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Monroe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,653
    views
  • 1,252
    downloads
  • 129
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicole Monroe
  2. Han Han
  3. Peter S Shen
  4. Wesley I Sundquist
  5. Christopher P Hill
(2017)
Structural Basis of Protein Translocation by the Vps4-Vta1 AAA ATPase
eLife 6:e24487.
https://doi.org/10.7554/eLife.24487

Share this article

https://doi.org/10.7554/eLife.24487

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Flavia A Zanetti, Ignacio Fernandez ... Laura Ruth Delgui
    Research Article

    Birnaviruses are a group of double-stranded RNA (dsRNA) viruses infecting birds, fish, and insects. Early endosomes (EE) constitute the platform for viral replication. Here, we study the mechanism of birnaviral targeting of EE membranes. Using the Infectious Bursal Disease Virus (IBDV) as a model, we validate that the viral protein 3 (VP3) binds to phosphatidylinositol-3-phosphate (PI3P) present in EE membranes. We identify the domain of VP3 involved in PI3P-binding, named P2 and localized in the core of VP3, and establish the critical role of the arginine at position 200 (R200), conserved among all known birnaviruses. Mutating R200 abolishes viral replication. Moreover, we propose a two-stage modular mechanism for VP3 association with EE. Firstly, the carboxy-terminal region of VP3 adsorbs on the membrane, and then the VP3 core reinforces the membrane engagement by specifically binding PI3P through its P2 domain, additionally promoting PI3P accumulation.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Stephanie M Stuteley, Ghader Bashiri
    Insight

    In the bacterium M. smegmatis, an enzyme called MftG allows the cofactor mycofactocin to transfer electrons released during ethanol metabolism to the electron transport chain.