1. Biochemistry and Chemical Biology
Download icon

Evolution of an intricate J-protein network driving protein disaggregation in eukaryotes

  1. Nadinath B Nillegoda  Is a corresponding author
  2. Antonia Stank
  3. Duccio Malinverni
  4. Niels Alberts
  5. Anna Szlachcic
  6. Alessandro Barducci
  7. Paolo De Los Rios
  8. Rebecca C Wade  Is a corresponding author
  9. Bernd Bukau  Is a corresponding author
  1. University of Heidelberg, Germany
  2. Heidelberg Institute for Theoretical Studies, Germany
  3. École Polytechnique Fédérale de Lausanne, Switzerland
  4. Inserm, U1054, France
  5. University of Heidelberg, United Kingdom
Research Article
  • Cited 25
  • Views 2,724
  • Annotations
Cite this article as: eLife 2017;6:e24560 doi: 10.7554/eLife.24560

Abstract

Hsp70 participates in a broad spectrum of protein folding processes extending from nascent chain folding to protein disaggregation. This versatility in function is achieved through a diverse family of J-protein cochaperones that select substrates for Hsp70. Substrate selection is further tuned by transient complexation between different classes of J-proteins, which expands the range of protein aggregates targeted by metazoan Hsp70 for disaggregation. We assessed the prevalence and evolutionary conservation of J-protein complexation and cooperation in disaggregation. We find the emergence of a eukaryote-specific signature for interclass complexation of canonical J-proteins. Consistently, complexes exist in yeast and human cells, but not in bacteria, and correlate with cooperative action in disaggregation in vitro. Signature alterations exclude some J-proteins from networking, which ensures correct J-protein pairing, functional network integrity and J-protein specialization. This fundamental change in J-protein biology during the prokaryote-to-eukaryote transition allows for increased fine-tuning and broadening of Hsp70 function in eukaryotes.

Article and author information

Author details

  1. Nadinath B Nillegoda

    Center for Molecular Biology, University of Heidelberg, Heidelberg, Germany
    For correspondence
    n.nillegoda@zmbh.uni-heidelberg.de
    Competing interests
    The authors declare that no competing interests exist.
  2. Antonia Stank

    Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Duccio Malinverni

    Laboratory of Statistical Biophysics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Niels Alberts

    Center for Molecular Biology, University of Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Anna Szlachcic

    Center for Molecular Biology, University of Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Alessandro Barducci

    Inserm, U1054, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1911-8039
  7. Paolo De Los Rios

    Laboratory of Statistical Biophysics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Rebecca C Wade

    Center for Molecular Biology, University of Heidelberg, Heidelberg, Germany
    For correspondence
    rebecca.wade@h-its.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5951-8670
  9. Bernd Bukau

    Center for Molecular Biology, University of Heidelberg, Heidelberg, United Kingdom
    For correspondence
    bukau@zmbh.uni-heidelberg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0521-7199

Funding

Deutsche Forschungsgemeinschaft (SFB1036 BU617/19-3)

  • Bernd Bukau

Alexander von Humboldt-Stiftung (NA)

  • Nadinath B Nillegoda

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jeffery W Kelly, The Scripps Research Institute, United States

Publication history

  1. Received: December 22, 2016
  2. Accepted: May 12, 2017
  3. Accepted Manuscript published: May 15, 2017 (version 1)
  4. Accepted Manuscript updated: May 23, 2017 (version 2)
  5. Version of Record published: August 3, 2017 (version 3)
  6. Version of Record updated: August 8, 2017 (version 4)

Copyright

© 2017, Nillegoda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,724
    Page views
  • 772
    Downloads
  • 25
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Damien Lemoine et al.
    Research Article Updated

    Glutamate delta (GluD) receptors belong to the ionotropic glutamate receptor family, yet they don’t bind glutamate and are considered orphan. Progress in defining the ion channel function of GluDs in neurons has been hindered by a lack of pharmacological tools. Here, we used a chemo-genetic approach to engineer specific and photo-reversible pharmacology in GluD2 receptor. We incorporated a cysteine mutation in the cavity located above the putative ion channel pore, for site-specific conjugation with a photoswitchable pore blocker. In the constitutively open GluD2 Lurcher mutant, current could be rapidly and reversibly decreased with light. We then transposed the cysteine mutation to the native receptor, to demonstrate with high pharmacological specificity that metabotropic glutamate receptor signaling triggers opening of GluD2. Our results assess the functional relevance of GluD2 ion channel and introduce an optogenetic tool that will provide a novel and powerful means for probing GluD2 ionotropic contribution to neuronal physiology.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    İbrahim Avşar Ilik et al.
    Research Article Updated

    Nuclear speckles (NS) are among the most prominent biomolecular condensates. Despite their prevalence, research on the function of NS is virtually restricted to colocalization analyses, since an organizing core, without which NS cannot form, remains unidentified. The monoclonal antibody SC35, raised against a spliceosomal extract, is frequently used to mark NS. Unexpectedly, we found that this antibody was mischaracterized and the main target of SC35 mAb is SRRM2, a spliceosome-associated protein that sharply localizes to NS. Here we show that, the core of NS is likely formed by SON and SRRM2, since depletion of SON leads only to a partial disassembly of NS, while co-depletion of SON and SRRM2 or depletion of SON in a cell-line where intrinsically disordered regions (IDRs) of SRRM2 are genetically deleted, leads to a near-complete dissolution of NS. This work, therefore, paves the way to study the role of NS under diverse physiological and stress conditions.