Evolution of an intricate J-protein network driving protein disaggregation in eukaryotes

  1. Nadinath B Nillegoda  Is a corresponding author
  2. Antonia Stank
  3. Duccio Malinverni
  4. Niels Alberts
  5. Anna Szlachcic
  6. Alessandro Barducci
  7. Paolo De Los Rios
  8. Rebecca C Wade  Is a corresponding author
  9. Bernd Bukau  Is a corresponding author
  1. University of Heidelberg, Germany
  2. Heidelberg Institute for Theoretical Studies, Germany
  3. École Polytechnique Fédérale de Lausanne, Switzerland
  4. Inserm, U1054, France

Abstract

Hsp70 participates in a broad spectrum of protein folding processes extending from nascent chain folding to protein disaggregation. This versatility in function is achieved through a diverse family of J-protein cochaperones that select substrates for Hsp70. Substrate selection is further tuned by transient complexation between different classes of J-proteins, which expands the range of protein aggregates targeted by metazoan Hsp70 for disaggregation. We assessed the prevalence and evolutionary conservation of J-protein complexation and cooperation in disaggregation. We find the emergence of a eukaryote-specific signature for interclass complexation of canonical J-proteins. Consistently, complexes exist in yeast and human cells, but not in bacteria, and correlate with cooperative action in disaggregation in vitro. Signature alterations exclude some J-proteins from networking, which ensures correct J-protein pairing, functional network integrity and J-protein specialization. This fundamental change in J-protein biology during the prokaryote-to-eukaryote transition allows for increased fine-tuning and broadening of Hsp70 function in eukaryotes.

Article and author information

Author details

  1. Nadinath B Nillegoda

    Center for Molecular Biology, University of Heidelberg, Heidelberg, Germany
    For correspondence
    n.nillegoda@zmbh.uni-heidelberg.de
    Competing interests
    The authors declare that no competing interests exist.
  2. Antonia Stank

    Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Duccio Malinverni

    Laboratory of Statistical Biophysics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Niels Alberts

    Center for Molecular Biology, University of Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Anna Szlachcic

    Center for Molecular Biology, University of Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Alessandro Barducci

    Inserm, U1054, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1911-8039
  7. Paolo De Los Rios

    Laboratory of Statistical Biophysics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Rebecca C Wade

    Center for Molecular Biology, University of Heidelberg, Heidelberg, Germany
    For correspondence
    rebecca.wade@h-its.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5951-8670
  9. Bernd Bukau

    Center for Molecular Biology, University of Heidelberg, Heidelberg, Germany
    For correspondence
    bukau@zmbh.uni-heidelberg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0521-7199

Funding

Deutsche Forschungsgemeinschaft (SFB1036 BU617/19-3)

  • Bernd Bukau

Alexander von Humboldt-Stiftung (NA)

  • Nadinath B Nillegoda

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Nillegoda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,651
    views
  • 895
    downloads
  • 60
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nadinath B Nillegoda
  2. Antonia Stank
  3. Duccio Malinverni
  4. Niels Alberts
  5. Anna Szlachcic
  6. Alessandro Barducci
  7. Paolo De Los Rios
  8. Rebecca C Wade
  9. Bernd Bukau
(2017)
Evolution of an intricate J-protein network driving protein disaggregation in eukaryotes
eLife 6:e24560.
https://doi.org/10.7554/eLife.24560

Share this article

https://doi.org/10.7554/eLife.24560

Further reading

    1. Biochemistry and Chemical Biology
    Swarang Sachin Pundlik, Alok Barik ... Arvind Ramanathan
    Short Report

    Senescent cells are characterized by multiple features such as increased expression of senescence-associated β-galactosidase activity (SA β-gal) and cell cycle inhibitors such as p21 or p16. They accumulate with tissue damage and dysregulate tissue homeostasis. In the context of skeletal muscle, it is known that agents used for chemotherapy such as Doxorubicin (Doxo) cause buildup of senescent cells, leading to the inhibition of tissue regeneration. Senescent cells influence the neighboring cells via numerous secreted factors which form the senescence-associated secreted phenotype (SASP). Lipids are emerging as a key component of SASP that can control tissue homeostasis. Arachidonic acid-derived lipids have been shown to accumulate within senescent cells, specifically 15d-PGJ2, which is an electrophilic lipid produced by the non-enzymatic dehydration of the prostaglandin PGD2. This study shows that 15d-PGJ2 is also released by Doxo-induced senescent cells as an SASP factor. Treatment of skeletal muscle myoblasts with the conditioned medium from these senescent cells inhibits myoblast fusion during differentiation. Inhibition of L-PTGDS, the enzyme that synthesizes PGD2, diminishes the release of 15d-PGJ2 by senescent cells and restores muscle differentiation. We further show that this lipid post-translationally modifies Cys184 of HRas in C2C12 mouse skeletal myoblasts, causing a reduction in the localization of HRas to the Golgi, increased HRas binding to Ras Binding Domain (RBD) of RAF Kinase (RAF-RBD), and activation of cellular Mitogen Activated Protein (MAP) kinase–Extracellular Signal Regulated Kinase (Erk) signaling (but not the Akt signaling). Mutating C184 of HRas prevents the ability of 15d-PGJ2 to inhibit the differentiation of muscle cells and control the activity of HRas. This work shows that 15d-PGJ2 released from senescent cells could be targeted to restore muscle homeostasis after chemotherapy.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Duk-Su Koh, Anastasiia Stratiievska ... Sharona E Gordon
    Tools and Resources

    Ligands such as insulin, epidermal growth factor, platelet-derived growth factor, and nerve growth factor (NGF) initiate signals at the cell membrane by binding to receptor tyrosine kinases (RTKs). Along with G-protein-coupled receptors, RTKs are the main platforms for transducing extracellular signals into intracellular signals. Studying RTK signaling has been a challenge, however, due to the multiple signaling pathways to which RTKs typically are coupled, including MAP/ERK, PLCγ, and Class 1A phosphoinositide 3-kinases (PI3K). The multi-pronged RTK signaling has been a barrier to isolating the effects of any one downstream pathway. Here, we used optogenetic activation of PI3K to decouple its activation from other RTK signaling pathways. In this context, we used genetic code expansion to introduce a click chemistry noncanonical amino acid into the extracellular side of membrane proteins. Applying a cell-impermeant click chemistry fluorophore allowed us to visualize delivery of membrane proteins to the plasma membrane in real time. Using these approaches, we demonstrate that activation of PI3K, without activating other pathways downstream of RTK signaling, is sufficient to traffic the TRPV1 ion channels and insulin receptors to the plasma membrane.