Evolution of an intricate J-protein network driving protein disaggregation in eukaryotes

  1. Nadinath B Nillegoda  Is a corresponding author
  2. Antonia Stank
  3. Duccio Malinverni
  4. Niels Alberts
  5. Anna Szlachcic
  6. Alessandro Barducci
  7. Paolo De Los Rios
  8. Rebecca C Wade  Is a corresponding author
  9. Bernd Bukau  Is a corresponding author
  1. University of Heidelberg, Germany
  2. Heidelberg Institute for Theoretical Studies, Germany
  3. École Polytechnique Fédérale de Lausanne, Switzerland
  4. Inserm, U1054, France

Abstract

Hsp70 participates in a broad spectrum of protein folding processes extending from nascent chain folding to protein disaggregation. This versatility in function is achieved through a diverse family of J-protein cochaperones that select substrates for Hsp70. Substrate selection is further tuned by transient complexation between different classes of J-proteins, which expands the range of protein aggregates targeted by metazoan Hsp70 for disaggregation. We assessed the prevalence and evolutionary conservation of J-protein complexation and cooperation in disaggregation. We find the emergence of a eukaryote-specific signature for interclass complexation of canonical J-proteins. Consistently, complexes exist in yeast and human cells, but not in bacteria, and correlate with cooperative action in disaggregation in vitro. Signature alterations exclude some J-proteins from networking, which ensures correct J-protein pairing, functional network integrity and J-protein specialization. This fundamental change in J-protein biology during the prokaryote-to-eukaryote transition allows for increased fine-tuning and broadening of Hsp70 function in eukaryotes.

Article and author information

Author details

  1. Nadinath B Nillegoda

    Center for Molecular Biology, University of Heidelberg, Heidelberg, Germany
    For correspondence
    n.nillegoda@zmbh.uni-heidelberg.de
    Competing interests
    The authors declare that no competing interests exist.
  2. Antonia Stank

    Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Duccio Malinverni

    Laboratory of Statistical Biophysics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Niels Alberts

    Center for Molecular Biology, University of Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Anna Szlachcic

    Center for Molecular Biology, University of Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Alessandro Barducci

    Inserm, U1054, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1911-8039
  7. Paolo De Los Rios

    Laboratory of Statistical Biophysics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Rebecca C Wade

    Center for Molecular Biology, University of Heidelberg, Heidelberg, Germany
    For correspondence
    rebecca.wade@h-its.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5951-8670
  9. Bernd Bukau

    Center for Molecular Biology, University of Heidelberg, Heidelberg, Germany
    For correspondence
    bukau@zmbh.uni-heidelberg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0521-7199

Funding

Deutsche Forschungsgemeinschaft (SFB1036 BU617/19-3)

  • Bernd Bukau

Alexander von Humboldt-Stiftung (NA)

  • Nadinath B Nillegoda

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jeffery W Kelly, The Scripps Research Institute, United States

Publication history

  1. Received: December 22, 2016
  2. Accepted: May 12, 2017
  3. Accepted Manuscript published: May 15, 2017 (version 1)
  4. Accepted Manuscript updated: May 23, 2017 (version 2)
  5. Version of Record published: August 3, 2017 (version 3)
  6. Version of Record updated: August 8, 2017 (version 4)

Copyright

© 2017, Nillegoda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,211
    Page views
  • 828
    Downloads
  • 43
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nadinath B Nillegoda
  2. Antonia Stank
  3. Duccio Malinverni
  4. Niels Alberts
  5. Anna Szlachcic
  6. Alessandro Barducci
  7. Paolo De Los Rios
  8. Rebecca C Wade
  9. Bernd Bukau
(2017)
Evolution of an intricate J-protein network driving protein disaggregation in eukaryotes
eLife 6:e24560.
https://doi.org/10.7554/eLife.24560

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Edmundo G Vides, Ayan Adhikari ... Suzanne R Pfeffer
    Research Advance

    Activating mutations in the Leucine Rich Repeat Kinase 2 (LRRK2) cause Parkinson's disease and previously we showed that activated LRRK2 phosphorylates a subset of Rab GTPases (Steger et al., 2017). Moreover, Golgi-associated Rab29 can recruit LRRK2 to the surface of the Golgi and activate it there for both auto- and Rab substrate phosphorylation. Here we define the precise Rab29 binding region of the LRRK2 Armadillo domain between residues 360-450 and show that this domain, termed 'Site #1', can also bind additional LRRK2 substrates, Rab8A and Rab10. Moreover, we identify a distinct, N-terminal, higher affinity interaction interface between LRRK2 phosphorylated Rab8 and Rab10 termed 'Site #2', that can retain LRRK2 on membranes in cells to catalyze multiple, subsequent phosphorylation events. Kinase inhibitor washout experiments demonstrate that rapid recovery of kinase activity in cells depends on the ability of LRRK2 to associate with phosphorylated Rab proteins, and phosphorylated Rab8A stimulates LRRK2 phosphorylation of Rab10 in vitro. Reconstitution of purified LRRK2 recruitment onto planar lipid bilayers decorated with Rab10 protein demonstrates cooperative association of only active LRRK2 with phospho-Rab10-containing membrane surfaces. These experiments reveal a feed-forward pathway that provides spatial control and membrane activation of LRRK2 kinase activity.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Andrea Volante, Juan Carlos Alonso, Kiyoshi Mizuuchi
    Research Article Updated

    Three-component ParABS partition systems ensure stable inheritance of many bacterial chromosomes and low-copy-number plasmids. ParA localizes to the nucleoid through its ATP-dependent nonspecific DNA-binding activity, whereas centromere-like parS-DNA and ParB form partition complexes that activate ParA-ATPase to drive the system dynamics. The essential parS sequence arrangements vary among ParABS systems, reflecting the architectural diversity of their partition complexes. Here, we focus on the pSM19035 plasmid partition system that uses a ParBpSM of the ribbon-helix-helix (RHH) family. We show that parSpSM with four or more contiguous ParBpSM-binding sequence repeats is required to assemble a stable ParApSM-ParBpSM complex and efficiently activate the ParApSM-ATPase, stimulating complex disassembly. Disruption of the contiguity of the parSpSM sequence array destabilizes the ParApSM-ParBpSM complex and prevents efficient ATPase activation. Our findings reveal the unique architecture of the pSM19035 partition complex and how it interacts with nucleoid-bound ParApSM-ATP.