The interactome of the copper transporter ATP7A belongs to a network of neurodevelopmental and neurodegeneration factors

  1. Heather S Comstra
  2. Jacob McArthy
  3. Samantha Rudin-Rush
  4. Cortnie Hartwig
  5. Avanti Gokhale
  6. Stephanie A Zlatic
  7. Jessica B Blackburn
  8. Erica Werner
  9. Michael Petris
  10. Priya D'Souza
  11. Parinya Panuwet
  12. Dana Boyd Barr
  13. Vladimir Lupashin
  14. Alysia Vrailas-Mortimer  Is a corresponding author
  15. Victor Faundez  Is a corresponding author
  1. Emory University, United States
  2. Illinois State University, United States
  3. Agnes Scott College, United States
  4. University of Arkansas for Medical Sciences, United States
  5. University of Missouri, United States

Abstract

Genetic and environmental factors, such as metals, interact to determine neurological traits. We reasoned that interactomes of molecules handling metals in neurons should include novel metal homeostasis pathways. We focused on copper and its transporter ATP7A because ATP7A null mutations cause neurodegeneration. We performed ATP7A immunoaffinity chromatography and identified 541 proteins co-isolating with ATP7A. The ATP7A interactome concentrated gene products implicated in neurodegeneration and neurodevelopmental disorders, including subunits of the Golgi-localized conserved oligomeric Golgi (COG) complex. COG null cells possess altered content and subcellular localization of ATP7A and CTR1 (SLC31A1), the transporter required for copper uptake, as well as decreased total cellular copper, and impaired copper-dependent metabolic responses. Changes in the expression of ATP7A and COG subunits in Drosophila neurons altered synapse development in larvae and copper-induced mortality of adult flies. We conclude that the ATP7A interactome encompasses a novel COG-dependent mechanism to specify neuronal development and survival.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Heather S Comstra

    Department of Cell Biology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jacob McArthy

    School of Biological Sciences, Illinois State University, Normal, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Samantha Rudin-Rush

    Department of Chemistry, Agnes Scott College, Decatur, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Cortnie Hartwig

    Department of Chemistry, Agnes Scott College, Decatur, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Avanti Gokhale

    Department of Cell Biology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Stephanie A Zlatic

    Department of Cell Biology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jessica B Blackburn

    Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Erica Werner

    Department of Biochemistry, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael Petris

    Department of Biochemistry, University of Missouri, Columbia, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Priya D'Souza

    Department of Rollins School of Public Health, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Parinya Panuwet

    Department of Rollins School of Public Health, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Dana Boyd Barr

    Department of Rollins School of Public Health, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Vladimir Lupashin

    Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2350-1962
  14. Alysia Vrailas-Mortimer

    School of Biological Sciences, Illinois State University, Normal, United States
    For correspondence
    avraila@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  15. Victor Faundez

    Department of Cell Biology, Emory University, Atlanta, United States
    For correspondence
    vfaunde@emory.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2114-5271

Funding

National Institute of Neurological Disorders and Stroke (NS088503)

  • Victor Faundez

National Institute of Diabetes and Digestive and Kidney Diseases (DK093386)

  • Michael Petris

National Institute of General Medical Sciences (GM083144)

  • Vladimir Lupashin

National Institute of Environmental Health Sciences (P30 ES019776)

  • Dana Boyd Barr

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrew B West, University of Alabama at Birmingham, United States

Version history

  1. Received: December 28, 2016
  2. Accepted: March 28, 2017
  3. Accepted Manuscript published: March 29, 2017 (version 1)
  4. Accepted Manuscript updated: April 5, 2017 (version 2)
  5. Version of Record published: April 21, 2017 (version 3)

Copyright

© 2017, Comstra et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,122
    views
  • 618
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Heather S Comstra
  2. Jacob McArthy
  3. Samantha Rudin-Rush
  4. Cortnie Hartwig
  5. Avanti Gokhale
  6. Stephanie A Zlatic
  7. Jessica B Blackburn
  8. Erica Werner
  9. Michael Petris
  10. Priya D'Souza
  11. Parinya Panuwet
  12. Dana Boyd Barr
  13. Vladimir Lupashin
  14. Alysia Vrailas-Mortimer
  15. Victor Faundez
(2017)
The interactome of the copper transporter ATP7A belongs to a network of neurodevelopmental and neurodegeneration factors
eLife 6:e24722.
https://doi.org/10.7554/eLife.24722

Share this article

https://doi.org/10.7554/eLife.24722

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.