The interactome of the copper transporter ATP7A belongs to a network of neurodevelopmental and neurodegeneration factors

  1. Heather S Comstra
  2. Jacob McArthy
  3. Samantha Rudin-Rush
  4. Cortnie Hartwig
  5. Avanti Gokhale
  6. Stephanie A Zlatic
  7. Jessica B Blackburn
  8. Erica Werner
  9. Michael Petris
  10. Priya D'Souza
  11. Parinya Panuwet
  12. Dana Boyd Barr
  13. Vladimir Lupashin
  14. Alysia Vrailas-Mortimer  Is a corresponding author
  15. Victor Faundez  Is a corresponding author
  1. Emory University, United States
  2. Illinois State University, United States
  3. Agnes Scott College, United States
  4. University of Arkansas for Medical Sciences, United States
  5. University of Missouri, United States

Abstract

Genetic and environmental factors, such as metals, interact to determine neurological traits. We reasoned that interactomes of molecules handling metals in neurons should include novel metal homeostasis pathways. We focused on copper and its transporter ATP7A because ATP7A null mutations cause neurodegeneration. We performed ATP7A immunoaffinity chromatography and identified 541 proteins co-isolating with ATP7A. The ATP7A interactome concentrated gene products implicated in neurodegeneration and neurodevelopmental disorders, including subunits of the Golgi-localized conserved oligomeric Golgi (COG) complex. COG null cells possess altered content and subcellular localization of ATP7A and CTR1 (SLC31A1), the transporter required for copper uptake, as well as decreased total cellular copper, and impaired copper-dependent metabolic responses. Changes in the expression of ATP7A and COG subunits in Drosophila neurons altered synapse development in larvae and copper-induced mortality of adult flies. We conclude that the ATP7A interactome encompasses a novel COG-dependent mechanism to specify neuronal development and survival.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Heather S Comstra

    Department of Cell Biology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jacob McArthy

    School of Biological Sciences, Illinois State University, Normal, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Samantha Rudin-Rush

    Department of Chemistry, Agnes Scott College, Decatur, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Cortnie Hartwig

    Department of Chemistry, Agnes Scott College, Decatur, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Avanti Gokhale

    Department of Cell Biology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Stephanie A Zlatic

    Department of Cell Biology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jessica B Blackburn

    Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Erica Werner

    Department of Biochemistry, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael Petris

    Department of Biochemistry, University of Missouri, Columbia, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Priya D'Souza

    Department of Rollins School of Public Health, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Parinya Panuwet

    Department of Rollins School of Public Health, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Dana Boyd Barr

    Department of Rollins School of Public Health, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Vladimir Lupashin

    Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2350-1962
  14. Alysia Vrailas-Mortimer

    School of Biological Sciences, Illinois State University, Normal, United States
    For correspondence
    avraila@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  15. Victor Faundez

    Department of Cell Biology, Emory University, Atlanta, United States
    For correspondence
    vfaunde@emory.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2114-5271

Funding

National Institute of Neurological Disorders and Stroke (NS088503)

  • Victor Faundez

National Institute of Diabetes and Digestive and Kidney Diseases (DK093386)

  • Michael Petris

National Institute of General Medical Sciences (GM083144)

  • Vladimir Lupashin

National Institute of Environmental Health Sciences (P30 ES019776)

  • Dana Boyd Barr

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrew B West, University of Alabama at Birmingham, United States

Publication history

  1. Received: December 28, 2016
  2. Accepted: March 28, 2017
  3. Accepted Manuscript published: March 29, 2017 (version 1)
  4. Accepted Manuscript updated: April 5, 2017 (version 2)
  5. Version of Record published: April 21, 2017 (version 3)

Copyright

© 2017, Comstra et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,637
    Page views
  • 569
    Downloads
  • 42
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Heather S Comstra
  2. Jacob McArthy
  3. Samantha Rudin-Rush
  4. Cortnie Hartwig
  5. Avanti Gokhale
  6. Stephanie A Zlatic
  7. Jessica B Blackburn
  8. Erica Werner
  9. Michael Petris
  10. Priya D'Souza
  11. Parinya Panuwet
  12. Dana Boyd Barr
  13. Vladimir Lupashin
  14. Alysia Vrailas-Mortimer
  15. Victor Faundez
(2017)
The interactome of the copper transporter ATP7A belongs to a network of neurodevelopmental and neurodegeneration factors
eLife 6:e24722.
https://doi.org/10.7554/eLife.24722

Further reading

    1. Cell Biology
    Desiree Schatton et al.
    Research Article

    Proliferating cells undergo metabolic changes in synchrony with cell cycle progression and cell division. Mitochondria provide fuel, metabolites, and ATP during different phases of the cell cycle, however it is not completely understood how mitochondrial function and the cell cycle are coordinated. CLUH is a post-transcriptional regulator of mRNAs encoding mitochondrial proteins involved in oxidative phosphorylation and several metabolic pathways. Here, we show a role of CLUH in regulating the expression of astrin, which is involved in metaphase to anaphase progression, centrosome integrity, and mTORC1 inhibition. We find that CLUH binds both the SPAG5 mRNA and its product astrin, and controls the synthesis and the stability of the full-length astrin-1 isoform. We show that CLUH interacts with astrin-1 specifically during interphase. Astrin-depleted cells show mTORC1 hyperactivation and enhanced anabolism. On the other hand, cells lacking CLUH show decreased astrin levels and increased mTORC1 signaling, but cannot sustain anaplerotic and anabolic pathways. In absence of CLUH, cells fail to grow during G1, and progress faster through the cell cycle, indicating dysregulated matching of growth, metabolism and cell cycling. Our data reveal a role of CLUH in coupling growth signaling pathways and mitochondrial metabolism with cell cycle progression.

    1. Cell Biology
    Dillon Jevon et al.
    Research Article

    A developing understanding suggests that spatial compartmentalisation in pancreatic β cells is critical in controlling insulin secretion. To investigate the mechanisms, we have developed live-cell sub-cellular imaging methods using the mouse organotypic pancreatic slice. We demonstrate that the organotypic pancreatic slice, when compared with isolated islets, preserves intact β cell structure, and enhances glucose dependent Ca2+ responses and insulin secretion. Using the slice technique, we have discovered the essential role of local activation of integrins and the downstream component, focal adhesion kinase, in regulating β cells. Integrins and focal adhesion kinase are exclusively activated at the β cell capillary interface and using in situ and in vitro models we show their activation both positions presynaptic scaffold proteins, like ELKS and liprin, and regulates glucose dependent Ca2+ responses and insulin secretion. We conclude that focal adhesion kinase orchestrates the final steps of glucose dependent insulin secretion within the restricted domain where β cells contact the islet capillaries.