1. Cell Biology
  2. Neuroscience
Download icon

The interactome of the copper transporter ATP7A belongs to a network of neurodevelopmental and neurodegeneration factors

  1. Heather S Comstra
  2. Jacob McArthy
  3. Samantha Rudin-Rush
  4. Cortnie Hartwig
  5. Avanti Gokhale
  6. Stephanie A Zlatic
  7. Jessica B Blackburn
  8. Erica Werner
  9. Michael Petris
  10. Priya D'Souza
  11. Parinya Panuwet
  12. Dana Boyd Barr
  13. Vladimir Lupashin
  14. Alysia Vrailas-Mortimer  Is a corresponding author
  15. Victor Faundez  Is a corresponding author
  1. Emory University, United States
  2. Illinois State University, United States
  3. Agnes Scott College, United States
  4. University of Arkansas for Medical Sciences, United States
  5. University of Missouri, United States
Research Article
  • Cited 31
  • Views 2,154
  • Annotations
Cite this article as: eLife 2017;6:e24722 doi: 10.7554/eLife.24722

Abstract

Genetic and environmental factors, such as metals, interact to determine neurological traits. We reasoned that interactomes of molecules handling metals in neurons should include novel metal homeostasis pathways. We focused on copper and its transporter ATP7A because ATP7A null mutations cause neurodegeneration. We performed ATP7A immunoaffinity chromatography and identified 541 proteins co-isolating with ATP7A. The ATP7A interactome concentrated gene products implicated in neurodegeneration and neurodevelopmental disorders, including subunits of the Golgi-localized conserved oligomeric Golgi (COG) complex. COG null cells possess altered content and subcellular localization of ATP7A and CTR1 (SLC31A1), the transporter required for copper uptake, as well as decreased total cellular copper, and impaired copper-dependent metabolic responses. Changes in the expression of ATP7A and COG subunits in Drosophila neurons altered synapse development in larvae and copper-induced mortality of adult flies. We conclude that the ATP7A interactome encompasses a novel COG-dependent mechanism to specify neuronal development and survival.

Article and author information

Author details

  1. Heather S Comstra

    Department of Cell Biology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jacob McArthy

    School of Biological Sciences, Illinois State University, Normal, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Samantha Rudin-Rush

    Department of Chemistry, Agnes Scott College, Decatur, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Cortnie Hartwig

    Department of Chemistry, Agnes Scott College, Decatur, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Avanti Gokhale

    Department of Cell Biology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Stephanie A Zlatic

    Department of Cell Biology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jessica B Blackburn

    Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Erica Werner

    Department of Biochemistry, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael Petris

    Department of Biochemistry, University of Missouri, Columbia, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Priya D'Souza

    Department of Rollins School of Public Health, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Parinya Panuwet

    Department of Rollins School of Public Health, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Dana Boyd Barr

    Department of Rollins School of Public Health, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Vladimir Lupashin

    Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2350-1962
  14. Alysia Vrailas-Mortimer

    School of Biological Sciences, Illinois State University, Normal, United States
    For correspondence
    avraila@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  15. Victor Faundez

    Department of Cell Biology, Emory University, Atlanta, United States
    For correspondence
    vfaunde@emory.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2114-5271

Funding

National Institute of Neurological Disorders and Stroke (NS088503)

  • Victor Faundez

National Institute of Diabetes and Digestive and Kidney Diseases (DK093386)

  • Michael Petris

National Institute of General Medical Sciences (GM083144)

  • Vladimir Lupashin

National Institute of Environmental Health Sciences (P30 ES019776)

  • Dana Boyd Barr

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrew B West, University of Alabama at Birmingham, United States

Publication history

  1. Received: December 28, 2016
  2. Accepted: March 28, 2017
  3. Accepted Manuscript published: March 29, 2017 (version 1)
  4. Accepted Manuscript updated: April 5, 2017 (version 2)
  5. Version of Record published: April 21, 2017 (version 3)

Copyright

© 2017, Comstra et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,154
    Page views
  • 527
    Downloads
  • 31
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    İbrahim Avşar Ilik et al.
    Research Article

    The nucleus of higher eukaryotes is a highly compartmentalized and dynamic organelle consisting of several biomolecular condensates that regulate gene expression at multiple levels (Banani et al., 2017; Shin and Brangwynne, 2017). First reported more than 100 years ago by Ramón y Cajal, nuclear speckles (NS) are among the most prominent of such condensates (Spector and Lamond, 2011). Despite their prevalence, research on the function of NS is virtually restricted to colocalization analyses, since an organizing core, without which NS cannot form, remains unidentified (Chen and Belmont, 2019; Galganski et al., 2017). The monoclonal antibody SC35, which was raised against a spliceosomal extract, is a frequently used reagent to mark NS since its debut in 1990 (Fu and Maniatis, 1990). Unexpectedly, we found that this antibody has been misidentified and the main target of SC35 mAb is SRRM2, a large (~300 kDa), spliceosome-associated (Jia and Sun, 2018) protein with prominent intrinsically disordered regions (IDRs) that sharply localizes to NS (Blencowe et al., 1994). Here we show that, the core of NS is likely formed by SON and SRRM2, since depletion of SON leads only to a partial disassembly of NS as reported previously (Ahn et al., 2011; Fei et al., 2017; Sharma et al., 2010), in contrast, combined depletion of SON together with SRRM2, but not other NS associated factors, or depletion of SON in a cell line where IDRs of SRRM2 are genetically deleted, leads to a near-complete dissolution of NS. This work, therefore, paves the way to study the role of NS under diverse physiological and stress conditions.

    1. Cell Biology
    2. Biochemistry and Chemical Biology
    Melissa V Gammons et al.
    Research Article Updated

    Feedback control is a universal feature of cell signaling pathways. Naked/NKD is a widely conserved feedback regulator of Wnt signaling which controls animal development and tissue homeostasis. Naked/NKD destabilizes Dishevelled, which assembles Wnt signalosomes to inhibit the β-catenin destruction complex via recruitment of Axin. Here, we discover that the molecular mechanism underlying Naked/NKD function relies on its assembly into ultra-stable decameric core aggregates via its conserved C-terminal histidine cluster (HisC). HisC aggregation is facilitated by Dishevelled and depends on accumulation of Naked/NKD during prolonged Wnt stimulation. Naked/NKD HisC cores co-aggregate with a conserved histidine cluster within Axin, to destabilize it along with Dishevelled, possibly via the autophagy receptor p62, which binds to HisC aggregates. Consistent with this, attenuated Wnt responses are observed in CRISPR-engineered flies and human epithelial cells whose Naked/NKD HisC has been deleted. Thus, HisC aggregation by Naked/NKD provides context-dependent feedback control of prolonged Wnt responses.