Detecting changes in dynamic and complex acoustic environments

  1. Yves Boubenec  Is a corresponding author
  2. Jennifer Lawlor
  3. Urszula Górska
  4. Shihab Shamma
  5. Bernhard Englitz
  1. Laboratoire des Systèmes Perceptifs, CNRS UMR 8248, France
  2. Radboud Universiteit, Netherlands

Abstract

Natural sounds such as wind or rain, are characterized by the statistical occurrence of their constituents. Despite their complexity, listeners readily detect changes in these contexts. We here address the neural basis of statistical decision-making using a combination of psychophysics, EEG and modelling. In a texture-based, change-detection paradigm, human performance and reaction times improved with longer pre-change exposure, consistent with improved estimation of baseline statistics. Change-locked and decision-related EEG responses were found in a centro-parietal scalp location, whose slope depended on change size, consistent with sensory evidence accumulation. The potential's amplitude scaled with the duration of pre-change exposure, suggesting a time-dependent decision threshold. Auditory cortex-related potentials showed no response to the change. A dual timescale, statistical estimation model accounted for subjects' performance. Furthermore, a decision-augmented auditory cortex model accounted for performance and reaction times, suggesting that the primary cortical representation requires little post-processing to enable change-detection in complex acoustic environments.

Article and author information

Author details

  1. Yves Boubenec

    Laboratoire des Systèmes Perceptifs, CNRS UMR 8248, Paris, France
    For correspondence
    boubenec@ens.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0106-6947
  2. Jennifer Lawlor

    Laboratoire des Systèmes Perceptifs, CNRS UMR 8248, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6116-3001
  3. Urszula Górska

    Department of Neurophysiology, Radboud Universiteit, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Shihab Shamma

    Laboratoire des Systèmes Perceptifs, CNRS UMR 8248, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Bernhard Englitz

    Laboratoire des Systèmes Perceptifs, CNRS UMR 8248, Paris, France
    Competing interests
    The authors declare that no competing interests exist.

Funding

Agence Nationale de la Recherche (ANR-10-LABX-0087 IEC)

  • Yves Boubenec
  • Jennifer Lawlor
  • Shihab Shamma
  • Bernhard Englitz

Agence Nationale de la Recherche (ANR-10-IDEX-0001-02 PSL*)

  • Yves Boubenec
  • Jennifer Lawlor
  • Shihab Shamma
  • Bernhard Englitz

Advanced European Research Council (ERC 295603)

  • Yves Boubenec
  • Jennifer Lawlor
  • Shihab Shamma
  • Bernhard Englitz

European Commission's Marie Curie grant (660328)

  • Bernhard Englitz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Timothy EJ Behrens, University College London, United Kingdom

Ethics

Human subjects: All experiments were performed in accordance with the guidelines of the Helsinki Declaration. The Ethics Committees for Health Sciences at Université Paris Descartes approved the experimental procedures.

Version history

  1. Received: January 5, 2017
  2. Accepted: March 4, 2017
  3. Accepted Manuscript published: March 6, 2017 (version 1)
  4. Accepted Manuscript updated: March 8, 2017 (version 2)
  5. Version of Record published: March 27, 2017 (version 3)
  6. Version of Record updated: March 29, 2017 (version 4)
  7. Version of Record updated: August 23, 2017 (version 5)

Copyright

© 2017, Boubenec et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,452
    Page views
  • 463
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yves Boubenec
  2. Jennifer Lawlor
  3. Urszula Górska
  4. Shihab Shamma
  5. Bernhard Englitz
(2017)
Detecting changes in dynamic and complex acoustic environments
eLife 6:e24910.
https://doi.org/10.7554/eLife.24910

Share this article

https://doi.org/10.7554/eLife.24910

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.