Detecting changes in dynamic and complex acoustic environments

  1. Yves Boubenec  Is a corresponding author
  2. Jennifer Lawlor
  3. Urszula Górska
  4. Shihab Shamma
  5. Bernhard Englitz
  1. Laboratoire des Systèmes Perceptifs, CNRS UMR 8248, France
  2. Radboud Universiteit, Netherlands

Abstract

Natural sounds such as wind or rain, are characterized by the statistical occurrence of their constituents. Despite their complexity, listeners readily detect changes in these contexts. We here address the neural basis of statistical decision-making using a combination of psychophysics, EEG and modelling. In a texture-based, change-detection paradigm, human performance and reaction times improved with longer pre-change exposure, consistent with improved estimation of baseline statistics. Change-locked and decision-related EEG responses were found in a centro-parietal scalp location, whose slope depended on change size, consistent with sensory evidence accumulation. The potential's amplitude scaled with the duration of pre-change exposure, suggesting a time-dependent decision threshold. Auditory cortex-related potentials showed no response to the change. A dual timescale, statistical estimation model accounted for subjects' performance. Furthermore, a decision-augmented auditory cortex model accounted for performance and reaction times, suggesting that the primary cortical representation requires little post-processing to enable change-detection in complex acoustic environments.

Article and author information

Author details

  1. Yves Boubenec

    Laboratoire des Systèmes Perceptifs, CNRS UMR 8248, Paris, France
    For correspondence
    boubenec@ens.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0106-6947
  2. Jennifer Lawlor

    Laboratoire des Systèmes Perceptifs, CNRS UMR 8248, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6116-3001
  3. Urszula Górska

    Department of Neurophysiology, Radboud Universiteit, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Shihab Shamma

    Laboratoire des Systèmes Perceptifs, CNRS UMR 8248, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Bernhard Englitz

    Laboratoire des Systèmes Perceptifs, CNRS UMR 8248, Paris, France
    Competing interests
    The authors declare that no competing interests exist.

Funding

Agence Nationale de la Recherche (ANR-10-LABX-0087 IEC)

  • Yves Boubenec
  • Jennifer Lawlor
  • Shihab Shamma
  • Bernhard Englitz

Agence Nationale de la Recherche (ANR-10-IDEX-0001-02 PSL*)

  • Yves Boubenec
  • Jennifer Lawlor
  • Shihab Shamma
  • Bernhard Englitz

Advanced European Research Council (ERC 295603)

  • Yves Boubenec
  • Jennifer Lawlor
  • Shihab Shamma
  • Bernhard Englitz

European Commission's Marie Curie grant (660328)

  • Bernhard Englitz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All experiments were performed in accordance with the guidelines of the Helsinki Declaration. The Ethics Committees for Health Sciences at Université Paris Descartes approved the experimental procedures.

Copyright

© 2017, Boubenec et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,498
    views
  • 470
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yves Boubenec
  2. Jennifer Lawlor
  3. Urszula Górska
  4. Shihab Shamma
  5. Bernhard Englitz
(2017)
Detecting changes in dynamic and complex acoustic environments
eLife 6:e24910.
https://doi.org/10.7554/eLife.24910

Share this article

https://doi.org/10.7554/eLife.24910

Further reading

    1. Neuroscience
    Ilya A Rybak, Natalia A Shevtsova ... Alain Frigon
    Research Article

    Locomotion in mammals is directly controlled by the spinal neuronal network, operating under the control of supraspinal signals and somatosensory feedback that interact with each other. However, the functional architecture of the spinal locomotor network, its operation regimes, and the role of supraspinal and sensory feedback in different locomotor behaviors, including at different speeds, remain unclear. We developed a computational model of spinal locomotor circuits receiving supraspinal drives and limb sensory feedback that could reproduce multiple experimental data obtained in intact and spinal-transected cats during tied-belt and split-belt treadmill locomotion. We provide evidence that the spinal locomotor network operates in different regimes depending on locomotor speed. In an intact system, at slow speeds (<0.4 m/s), the spinal network operates in a non-oscillating state-machine regime and requires sensory feedback or external inputs for phase transitions. Removing sensory feedback related to limb extension prevents locomotor oscillations at slow speeds. With increasing speed and supraspinal drives, the spinal network switches to a flexor-driven oscillatory regime and then to a classical half-center regime. Following spinal transection, the model predicts that the spinal network can only operate in the state-machine regime. Our results suggest that the spinal network operates in different regimes for slow exploratory and fast escape locomotor behaviors, making use of different control mechanisms.

    1. Neuroscience
    Tian Yuan, Li Wang, Yi Jiang
    Research Article

    Perceiving emotions from the movements of other biological entities is critical for human survival and interpersonal interactions. Here, we report that emotional information conveyed by point-light biological motion (BM) triggered automatic physiological responses as reflected in pupil size. Specifically, happy BM evoked larger pupil size than neutral and sad BM, while sad BM induced a smaller pupil response than neutral BM. Moreover, this happy over sad pupil dilation effect is negatively correlated with individual autistic traits. Notably, emotional BM with only local motion features retained could also exert modulations on pupils. Compared with intact BM, both happy and sad local BM evoked stronger pupil responses than neutral local BM starting from an earlier time point, with no difference between the happy and sad conditions. These results revealed a fine-grained pupil-related emotional modulation induced by intact BM and a coarse but rapid modulation by local BM, demonstrating multi-level processing of emotions in life motion signals. Taken together, our findings shed new light on BM emotion processing, and highlight the potential of utilizing the emotion-modulated pupil response to facilitate the diagnosis of social cognitive disorders.