Detecting changes in dynamic and complex acoustic environments

  1. Yves Boubenec  Is a corresponding author
  2. Jennifer Lawlor
  3. Urszula Górska
  4. Shihab Shamma
  5. Bernhard Englitz
  1. Laboratoire des Systèmes Perceptifs, CNRS UMR 8248, France
  2. Radboud Universiteit, Netherlands

Abstract

Natural sounds such as wind or rain, are characterized by the statistical occurrence of their constituents. Despite their complexity, listeners readily detect changes in these contexts. We here address the neural basis of statistical decision-making using a combination of psychophysics, EEG and modelling. In a texture-based, change-detection paradigm, human performance and reaction times improved with longer pre-change exposure, consistent with improved estimation of baseline statistics. Change-locked and decision-related EEG responses were found in a centro-parietal scalp location, whose slope depended on change size, consistent with sensory evidence accumulation. The potential's amplitude scaled with the duration of pre-change exposure, suggesting a time-dependent decision threshold. Auditory cortex-related potentials showed no response to the change. A dual timescale, statistical estimation model accounted for subjects' performance. Furthermore, a decision-augmented auditory cortex model accounted for performance and reaction times, suggesting that the primary cortical representation requires little post-processing to enable change-detection in complex acoustic environments.

Article and author information

Author details

  1. Yves Boubenec

    Laboratoire des Systèmes Perceptifs, CNRS UMR 8248, Paris, France
    For correspondence
    boubenec@ens.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0106-6947
  2. Jennifer Lawlor

    Laboratoire des Systèmes Perceptifs, CNRS UMR 8248, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6116-3001
  3. Urszula Górska

    Department of Neurophysiology, Radboud Universiteit, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Shihab Shamma

    Laboratoire des Systèmes Perceptifs, CNRS UMR 8248, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Bernhard Englitz

    Department of Neurophysiology, Donders Centre for Neuroscience, Radboud Universiteit, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.

Funding

Agence Nationale de la Recherche (ANR-10-LABX-0087 IEC)

  • Yves Boubenec
  • Jennifer Lawlor
  • Shihab Shamma
  • Bernhard Englitz

Agence Nationale de la Recherche (ANR-10-IDEX-0001-02 PSL*)

  • Yves Boubenec
  • Jennifer Lawlor
  • Shihab Shamma
  • Bernhard Englitz

Advanced European Research Council (ERC 295603)

  • Yves Boubenec
  • Jennifer Lawlor
  • Shihab Shamma
  • Bernhard Englitz

European Commission's Marie Curie grant (660328)

  • Bernhard Englitz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All experiments were performed in accordance with the guidelines of the Helsinki Declaration. The Ethics Committees for Health Sciences at Université Paris Descartes approved the experimental procedures.

Reviewing Editor

  1. Timothy EJ Behrens, University College London, United Kingdom

Publication history

  1. Received: January 5, 2017
  2. Accepted: March 4, 2017
  3. Accepted Manuscript published: March 6, 2017 (version 1)
  4. Accepted Manuscript updated: March 8, 2017 (version 2)
  5. Version of Record published: March 27, 2017 (version 3)
  6. Version of Record updated: March 29, 2017 (version 4)
  7. Version of Record updated: August 23, 2017 (version 5)

Copyright

© 2017, Boubenec et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,200
    Page views
  • 433
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yves Boubenec
  2. Jennifer Lawlor
  3. Urszula Górska
  4. Shihab Shamma
  5. Bernhard Englitz
(2017)
Detecting changes in dynamic and complex acoustic environments
eLife 6:e24910.
https://doi.org/10.7554/eLife.24910

Further reading

    1. Medicine
    2. Neuroscience
    Guido I Guberman et al.
    Research Article

    Background: The heterogeneity of white matter damage and symptoms in concussion has been identified as a major obstacle to therapeutic innovation. In contrast, most diffusion MRI (dMRI) studies on concussion have traditionally relied on group-comparison approaches that average out heterogeneity. To leverage, rather than average out, concussion heterogeneity, we combined dMRI and multivariate statistics to characterize multi-tract multi-symptom relationships.

    Methods: Using cross-sectional data from 306 previously-concussed children aged 9-10 from the Adolescent Brain Cognitive Development Study, we built connectomes weighted by classical and emerging diffusion measures. These measures were combined into two informative indices, the first representing microstructural complexity, the second representing axonal density. We deployed pattern-learning algorithms to jointly decompose these connectivity features and 19 symptom measures.

    Results: Early multi-tract multi-symptom pairs explained the most covariance and represented broad symptom categories, such as a general problems pair, or a pair representing all cognitive symptoms, and implicated more distributed networks of white matter tracts. Further pairs represented more specific symptom combinations, such as a pair representing attention problems exclusively, and were associated with more localized white matter abnormalities. Symptom representation was not systematically related to tract representation across pairs. Sleep problems were implicated across most pairs, but were related to different connections across these pairs. Expression of multi-tract features was not driven by sociodemographic and injury-related variables, as well as by clinical subgroups defined by the presence of ADHD. Analyses performed on a replication dataset showed consistent results.

    Conclusions: Using a double-multivariate approach, we identified clinically-informative, cross-demographic multi-tract multi-symptom relationships. These results suggest that rather than clear one-to-one symptom-connectivity disturbances, concussions may be characterized by subtypes of symptom/connectivity relationships. The symptom/connectivity relationships identified in multi-tract multi-symptom pairs were not apparent in single-tract/single-symptom analyses. Future studies aiming to better understand connectivity/symptom relationships should take into account multi-tract multi-symptom heterogeneity.

    Funding: financial support for this work from a Vanier Canada Graduate Scholarship from the Canadian Institutes of Health Research (GIG), an Ontario Graduate Scholarship (SS), a Restracomp Research Fellowship provided by the Hospital for Sick Children (SS), an Institutional Research Chair in Neuroinformatics (MD), as well as a Natural Sciences and Engineering Research Council CREATE grant (MD).

    1. Neuroscience
    Lior Matityahu et al.
    Research Article

    Striatal spiny projection neurons (SPNs) transform convergent excitatory corticostriatal inputs into an inhibitory signal that shapes basal ganglia output. This process is fine-tuned by striatal GABAergic interneurons (GINs), which receive overlapping cortical inputs and mediate rapid corticostriatal feedforward inhibition of SPNs. Adding another level of control, cholinergic interneurons (CINs), which are also vigorously activated by corticostriatal excitation, can disynaptically inhibit SPNs by activating α4β2 nicotinic acetylcholine receptors (nAChRs) on various GINs. Measurements of this disynaptic inhibitory pathway, however, indicate that it is too slow to compete with direct GIN-mediated feed-forward inhibition. Moreover, functional nAChRs are also present on populations of GINs that respond only weakly to phasic activation of CINs, such as parvalbumin-positive fast-spiking interneurons (PV-FSIs), making the overall role of nAChRs in shaping striatal synaptic integration unclear. Using acute striatal slices from mice we show that upon synchronous optogenetic activation of corticostriatal projections blockade of α4β2 nAChRs shortened SPN spike latencies and increased postsynaptic depolarizations. The nAChR-dependent inhibition was mediated by downstream GABA release, and data suggest that the GABA source was not limited to GINs that respond strongly to phasic CIN activation. In particular, the observed decrease in spike latency caused by nAChR blockade was associated with a diminished frequency of spontaneous inhibitory postsynaptic currents in SPNs, a parallel hyperpolarization of PV-FSIs, and was occluded by pharmacologically preventing cortical activation of PV-FSIs. Taken together, we describe a role for tonic (as opposed to phasic) activation of nAChRs in striatal function. We conclude that tonic activation of nAChRs by CINs maintains a GABAergic brake on cortically-driven striatal output by 'priming' feedforward inhibition, a process that may shape SPN spike timing, striatal processing and synaptic plasticity.