Detecting changes in dynamic and complex acoustic environments

  1. Yves Boubenec  Is a corresponding author
  2. Jennifer Lawlor
  3. Urszula Górska
  4. Shihab Shamma
  5. Bernhard Englitz
  1. Laboratoire des Systèmes Perceptifs, CNRS UMR 8248, France
  2. Radboud Universiteit, Netherlands

Abstract

Natural sounds such as wind or rain, are characterized by the statistical occurrence of their constituents. Despite their complexity, listeners readily detect changes in these contexts. We here address the neural basis of statistical decision-making using a combination of psychophysics, EEG and modelling. In a texture-based, change-detection paradigm, human performance and reaction times improved with longer pre-change exposure, consistent with improved estimation of baseline statistics. Change-locked and decision-related EEG responses were found in a centro-parietal scalp location, whose slope depended on change size, consistent with sensory evidence accumulation. The potential's amplitude scaled with the duration of pre-change exposure, suggesting a time-dependent decision threshold. Auditory cortex-related potentials showed no response to the change. A dual timescale, statistical estimation model accounted for subjects' performance. Furthermore, a decision-augmented auditory cortex model accounted for performance and reaction times, suggesting that the primary cortical representation requires little post-processing to enable change-detection in complex acoustic environments.

Article and author information

Author details

  1. Yves Boubenec

    Laboratoire des Systèmes Perceptifs, CNRS UMR 8248, Paris, France
    For correspondence
    boubenec@ens.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0106-6947
  2. Jennifer Lawlor

    Laboratoire des Systèmes Perceptifs, CNRS UMR 8248, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6116-3001
  3. Urszula Górska

    Department of Neurophysiology, Radboud Universiteit, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Shihab Shamma

    Laboratoire des Systèmes Perceptifs, CNRS UMR 8248, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Bernhard Englitz

    Department of Neurophysiology, Donders Centre for Neuroscience, Radboud Universiteit, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.

Funding

Agence Nationale de la Recherche (ANR-10-LABX-0087 IEC)

  • Yves Boubenec
  • Jennifer Lawlor
  • Shihab Shamma
  • Bernhard Englitz

Agence Nationale de la Recherche (ANR-10-IDEX-0001-02 PSL*)

  • Yves Boubenec
  • Jennifer Lawlor
  • Shihab Shamma
  • Bernhard Englitz

Advanced European Research Council (ERC 295603)

  • Yves Boubenec
  • Jennifer Lawlor
  • Shihab Shamma
  • Bernhard Englitz

European Commission's Marie Curie grant (660328)

  • Bernhard Englitz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All experiments were performed in accordance with the guidelines of the Helsinki Declaration. The Ethics Committees for Health Sciences at Université Paris Descartes approved the experimental procedures.

Copyright

© 2017, Boubenec et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,497
    views
  • 470
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yves Boubenec
  2. Jennifer Lawlor
  3. Urszula Górska
  4. Shihab Shamma
  5. Bernhard Englitz
(2017)
Detecting changes in dynamic and complex acoustic environments
eLife 6:e24910.
https://doi.org/10.7554/eLife.24910

Share this article

https://doi.org/10.7554/eLife.24910

Further reading

    1. Neuroscience
    Julien Rossato, François Hug ... Simon Avrillon
    Tools and Resources

    Decoding the activity of individual neural cells during natural behaviours allows neuroscientists to study how the nervous system generates and controls movements. Contrary to other neural cells, the activity of spinal motor neurons can be determined non-invasively (or minimally invasively) from the decomposition of electromyographic (EMG) signals into motor unit firing activities. For some interfacing and neuro-feedback investigations, EMG decomposition needs to be performed in real time. Here, we introduce an open-source software that performs real-time decoding of motor neurons using a blind-source separation approach for multichannel EMG signal processing. Separation vectors (motor unit filters) are optimised for each motor unit from baseline contractions and then re-applied in real time during test contractions. In this way, the firing activity of multiple motor neurons can be provided through different forms of visual feedback. We provide a complete framework with guidelines and examples of recordings to guide researchers who aim to study movement control at the motor neuron level. We first validated the software with synthetic EMG signals generated during a range of isometric contraction patterns. We then tested the software on data collected using either surface or intramuscular electrode arrays from five lower limb muscles (gastrocnemius lateralis and medialis, vastus lateralis and medialis, and tibialis anterior). We assessed how the muscle or variation of contraction intensity between the baseline contraction and the test contraction impacted the accuracy of the real-time decomposition. This open-source software provides a set of tools for neuroscientists to design experimental paradigms where participants can receive real-time feedback on the output of the spinal cord circuits.

    1. Neuroscience
    John P Veillette, Fan Gao, Howard C Nusbaum
    Research Article

    Sensory signals from the body’s visceral organs (e.g. the heart) can robustly influence the perception of exteroceptive sensations. This interoceptive–exteroceptive interaction has been argued to underlie self-awareness by situating one’s perceptual awareness of exteroceptive stimuli in the context of one’s internal state, but studies probing cardiac influences on visual awareness have yielded conflicting findings. In this study, we presented separate grating stimuli to each of subjects’ eyes as in a classic binocular rivalry paradigm – measuring the duration for which each stimulus dominates in perception. However, we caused the gratings to ‘pulse’ at specific times relative to subjects’ real-time electrocardiogram, manipulating whether pulses occurred during cardiac systole, when baroreceptors signal to the brain that the heart has contracted, or in diastole when baroreceptors are silent. The influential ‘Baroreceptor Hypothesis’ predicts the effect of baroreceptive input on visual perception should be uniformly suppressive. In contrast, we observed that dominance durations increased for systole-entrained stimuli, inconsistent with the Baroreceptor Hypothesis. Furthermore, we show that this cardiac-dependent rivalry effect is preserved in subjects who are at-chance discriminating between systole-entrained and diastole-presented stimuli in a separate interoceptive awareness task, suggesting that our results are not dependent on conscious access to heartbeat sensations.