Ribonuclease L mediates the cell-lethal phenotype of the double-stranded RNA editing enzyme ADAR1 in a human cell line

  1. Yize Li
  2. Shuvojit Banerjee
  3. Stephen A Goldstein
  4. Beihua Dong
  5. Christina Gaughan
  6. Sneha Rath
  7. Jesse Donovan
  8. Alexei V Korennykh
  9. Robert H Silverman  Is a corresponding author
  10. Susan R Weiss  Is a corresponding author
  1. University of Pennsylvania, United States
  2. Cleveland Clinic, United States
  3. Princeton University, United States

Abstract

ADAR1 isoforms are adenosine deaminases that edit and destabilize double-stranded RNA reducing its immunostimulatory activities. Mutation of ADAR1 leads to a severe neurodevelopmental and inflammatory disease of children, Aicardi-Goutiéres syndrome. In mice, Adar1 mutations are embryonic lethal but are rescued by mutation of the Mda5 or Mavs genes, which function in IFN induction. However, the specific IFN regulated proteins responsible for the pathogenic effects of ADAR1 mutation are unknown. We show that the cell-lethal phenotype of ADAR1 deletion in human lung adenocarcinoma A549 cells is rescued by CRISPR/Cas9 mutagenesis of the RNASEL gene or by expression of the RNase L antagonist, murine coronavirus NS2 accessory protein. Our result demonstrate that ablation of RNase L activity promotes survival of ADAR1 deficient cells even in the presence of MDA5 and MAVS, suggesting that the RNase L system is the primary sensor pathway for endogenous dsRNA that leads to cell death.

Article and author information

Author details

  1. Yize Li

    Department of Microbiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Shuvojit Banerjee

    Department of Cancer Biology, Cleveland Clinic, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Stephen A Goldstein

    Department of Microbiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Beihua Dong

    Department of Cancer Biology, Cleveland Clinic, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christina Gaughan

    Department of Cancer Biology, Cleveland Clinic, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sneha Rath

    Department of Molecular Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jesse Donovan

    Department of Molecular Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Alexei V Korennykh

    Department of Molecular Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Robert H Silverman

    Department of Cancer Biology, Cleveland Clinic, Cleveland, United States
    For correspondence
    silverr@ccf.org
    Competing interests
    The authors declare that no competing interests exist.
  10. Susan R Weiss

    Department of Microbiology, University of Pennsylvania, Philadelphia, United States
    For correspondence
    weisssr@upenn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8155-4528

Funding

National Institute of Allergy and Infectious Diseases (R01AI104887 to S.R.W. and R.H.S)

  • Robert H Silverman
  • Susan R Weiss

National Institute of Neurological Disorders and Stroke (R01-NS-080081 to S.R.W.)

  • Susan R Weiss

National Cancer Institute (R01CA044059 to R.H.S)

  • Robert H Silverman

Burroughs Wellcome Fund (Grant 1013579 to A.K.)

  • Alexei V Korennykh

Sidney Kimmel Foundation for Cancer Research (AWD1004002 to A.K.)

  • Alexei V Korennykh

National Institute of General Medical Sciences (R01GM110161 to A.K.)

  • Alexei V Korennykh

Vallee Foundation (23307-G0002-10009-96)

  • Alexei V Korennykh

National Institute of Allergy and Infectious Diseases (T32AI007324)

  • Stephen A Goldstein

National Institute of General Medical Sciences (T32GM007388)

  • Sneha Rath

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,436
    views
  • 1,344
    downloads
  • 142
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yize Li
  2. Shuvojit Banerjee
  3. Stephen A Goldstein
  4. Beihua Dong
  5. Christina Gaughan
  6. Sneha Rath
  7. Jesse Donovan
  8. Alexei V Korennykh
  9. Robert H Silverman
  10. Susan R Weiss
(2017)
Ribonuclease L mediates the cell-lethal phenotype of the double-stranded RNA editing enzyme ADAR1 in a human cell line
eLife 6:e25687.
https://doi.org/10.7554/eLife.25687

Share this article

https://doi.org/10.7554/eLife.25687

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Alejandro Rosell, Agata Adelajda Krygowska ... Esther Castellano Sanchez
    Research Article

    Macrophages are crucial in the body’s inflammatory response, with tightly regulated functions for optimal immune system performance. Our study reveals that the RAS–p110α signalling pathway, known for its involvement in various biological processes and tumourigenesis, regulates two vital aspects of the inflammatory response in macrophages: the initial monocyte movement and later-stage lysosomal function. Disrupting this pathway, either in a mouse model or through drug intervention, hampers the inflammatory response, leading to delayed resolution and the development of more severe acute inflammatory reactions in live models. This discovery uncovers a previously unknown role of the p110α isoform in immune regulation within macrophages, offering insight into the complex mechanisms governing their function during inflammation and opening new avenues for modulating inflammatory responses.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Malika Hale, Kennidy K Takehara ... Marion Pepper
    Research Article

    Pseudomonas aeruginosa (PA) is an opportunistic, frequently multidrug-resistant pathogen that can cause severe infections in hospitalized patients. Antibodies against the PA virulence factor, PcrV, protect from death and disease in a variety of animal models. However, clinical trials of PcrV-binding antibody-based products have thus far failed to demonstrate benefit. Prior candidates were derivations of antibodies identified using protein-immunized animal systems and required extensive engineering to optimize binding and/or reduce immunogenicity. Of note, PA infections are common in people with cystic fibrosis (pwCF), who are generally believed to mount normal adaptive immune responses. Here, we utilized a tetramer reagent to detect and isolate PcrV-specific B cells in pwCF and, via single-cell sorting and paired-chain sequencing, identified the B cell receptor (BCR) variable region sequences that confer PcrV-specificity. We derived multiple high affinity anti-PcrV monoclonal antibodies (mAbs) from PcrV-specific B cells across three donors, including mAbs that exhibit potent anti-PA activity in a murine pneumonia model. This robust strategy for mAb discovery expands what is known about PA-specific B cells in pwCF and yields novel mAbs with potential for future clinical use.