Cell size sensing in animal cells coordinates anabolic growth rates and cell cycle progression to maintain cell size uniformity

  1. Miriam Bracha Ginzberg
  2. Nancy Chang
  3. Heather D'Souza
  4. Nish Patel
  5. Ran Kafri  Is a corresponding author
  6. Marc W Kirschner  Is a corresponding author
  1. Harvard Medical School, United States
  2. The Hospital for Sick Children, Canada

Abstract

Cell size uniformity in healthy tissues suggests that control mechanisms might coordinate cell growth and division. We derived a method to assay whether cellular growth rates depend on cell size, by monitoring how variance in size changes as cells grow. Our data revealed that, twice during the cell cycle, growth rates are selectively increased in small cells and reduced in large cells, ensuring cell size uniformity. This regulation was also observed directly by monitoring nuclear growth in live cells. We also detected cell-size-dependent adjustments of G1 length, which further reduce variability. Combining our assays with chemical/genetic perturbations confirmed that cells employ two strategies, adjusting both cell cycle length and growth rate, to maintain the appropriate size. Additionally, although Rb signaling is not required for these regulatory behaviors, perturbing Cdk4 activity still influences cell size, suggesting that the Cdk4 pathway may play a role in designating the cell's target size.

Data availability

All data presented in this study are included in the manuscript and supporting files. Source data files have been provided for all figures.

Article and author information

Author details

  1. Miriam Bracha Ginzberg

    Department of Systems Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Nancy Chang

    Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Heather D'Souza

    Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Nish Patel

    Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Ran Kafri

    Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
    For correspondence
    ran.kafri@sickkids.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9656-0189
  6. Marc W Kirschner

    Department of Systems Biology, Harvard Medical School, Boston, United States
    For correspondence
    marc@hms.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6540-6130

Funding

Canadian Institutes of Health Research (FRN-343437)

  • Ran Kafri

National Institutes of Health (R01GM026875)

  • Marc W Kirschner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bruce Edgar, University of Utah, United States

Version history

  1. Received: March 18, 2017
  2. Accepted: June 7, 2018
  3. Accepted Manuscript published: June 11, 2018 (version 1)
  4. Version of Record published: July 4, 2018 (version 2)

Copyright

© 2018, Ginzberg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,728
    views
  • 1,160
    downloads
  • 89
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Miriam Bracha Ginzberg
  2. Nancy Chang
  3. Heather D'Souza
  4. Nish Patel
  5. Ran Kafri
  6. Marc W Kirschner
(2018)
Cell size sensing in animal cells coordinates anabolic growth rates and cell cycle progression to maintain cell size uniformity
eLife 7:e26957.
https://doi.org/10.7554/eLife.26957

Share this article

https://doi.org/10.7554/eLife.26957

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Marcel Proske, Robert Janowski ... Dierk Niessing
    Research Article

    Mutations in the human PURA gene cause the neurodevelopmental PURA syndrome. In contrast to several other monogenetic disorders, almost all reported mutations in this nucleic acid-binding protein result in the full disease penetrance. In this study, we observed that patient mutations across PURA impair its previously reported co-localization with processing bodies. These mutations either destroyed the folding integrity, RNA binding, or dimerization of PURA. We also solved the crystal structures of the N- and C-terminal PUR domains of human PURA and combined them with molecular dynamics simulations and nuclear magnetic resonance measurements. The observed unusually high dynamics and structural promiscuity of PURA indicated that this protein is particularly susceptible to mutations impairing its structural integrity. It offers an explanation why even conservative mutations across PURA result in the full penetrance of symptoms in patients with PURA syndrome.

    1. Cell Biology
    Mathieu C Husser, Nhat P Pham ... Alisa Piekny
    Tools and Resources

    Endogenous tags have become invaluable tools to visualize and study native proteins in live cells. However, generating human cell lines carrying endogenous tags is difficult due to the low efficiency of homology-directed repair. Recently, an engineered split mNeonGreen protein was used to generate a large-scale endogenous tag library in HEK293 cells. Using split mNeonGreen for large-scale endogenous tagging in human iPSCs would open the door to studying protein function in healthy cells and across differentiated cell types. We engineered an iPS cell line to express the large fragment of the split mNeonGreen protein (mNG21-10) and showed that it enables fast and efficient endogenous tagging of proteins with the short fragment (mNG211). We also demonstrate that neural network-based image restoration enables live imaging studies of highly dynamic cellular processes such as cytokinesis in iPSCs. This work represents the first step towards a genome-wide endogenous tag library in human stem cells.