Abstract

Disruption of the sumoylation/desumoylation equilibrium is associated with several disease states such as cancer and infections, however the mechanisms regulating the global SUMO balance remain poorly defined. Here, we show that infection by Shigella flexneri, the causative agent of human bacillary dysentery, switches off host sumoylation during epithelial cell infection in vitro and in vivo and that this effect is mainly mediated by a calcium/calpain-induced cleavage of the SUMO E1 enzyme SAE2, thus leading to sumoylation inhibition. Furthermore, we describe a mechanism by which Shigella promotes its own invasion by altering the sumoylation state of RhoGDIa, a master negative regulator of RhoGTPase activity and actin polymerization. Together, our data suggest that SUMO modification is essential to restrain pathogenic bacterial entry by limiting cytoskeletal rearrangement induced by bacterial effectors. Moreover, these findings identify calcium-activated calpains as powerful modulators of cellular sumoylation levels with potentially broad implications in several physiological and pathological situations.

Article and author information

Author details

  1. Pierre Lapaquette

    Nuclear Organization and Oncogenesis, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Sabrina Fritah

    Nuclear Organization and Oncogenesis, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Nouara Lhocine

    Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexandra Andrieux

    Nuclear Organization and Oncogenesis, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Giulia Nigro

    Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Joëlle Mounier

    Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Philippe Sansonetti

    Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Anne Dejean

    Nuclear Organization and Oncogenesis, Institut Pasteur, Paris, France
    For correspondence
    anne.dejean@pasteur.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4778-6840

Funding

Ligue Contre le Cancer (Post-doc fellowship to P. Lapaquette and labelled team to A. Dejean)

  • Pierre Lapaquette
  • Anne Dejean

Institut Pasteur

  • Philippe Sansonetti
  • Anne Dejean

Institut National Du Cancer

  • Anne Dejean

European Research Council (SUMOSTRESS)

  • Anne Dejean

Sidaction

  • Sabrina Fritah

Odyssey RE

  • Anne Dejean

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Dominique Soldati-Favre, University of Geneva, Switzerland

Ethics

Animal experimentation: Animal experiments were performed accordingly to the guidelines of the Institut Pasteur's ethical committee for animal use in research (CETEA number 2013-0028).

Version history

  1. Received: April 6, 2017
  2. Accepted: December 11, 2017
  3. Accepted Manuscript published: December 12, 2017 (version 1)
  4. Accepted Manuscript updated: December 13, 2017 (version 2)
  5. Accepted Manuscript updated: December 14, 2017 (version 3)
  6. Version of Record published: December 27, 2017 (version 4)

Copyright

© 2017, Lapaquette et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,505
    Page views
  • 282
    Downloads
  • 15
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pierre Lapaquette
  2. Sabrina Fritah
  3. Nouara Lhocine
  4. Alexandra Andrieux
  5. Giulia Nigro
  6. Joëlle Mounier
  7. Philippe Sansonetti
  8. Anne Dejean
(2017)
Shigella entry unveils a calcium/calpain-dependent mechanism for inhibiting sumoylation
eLife 6:e27444.
https://doi.org/10.7554/eLife.27444

Share this article

https://doi.org/10.7554/eLife.27444

Further reading

    1. Cell Biology
    Kazuki Hanaoka, Kensuke Nishikawa ... Kouichi Funato
    Research Article

    Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.