Phenotypic diversity and temporal variability in a bacterial signaling network revealed by single-cell FRET

  1. Johannes M Keegstra
  2. Keita Kamino
  3. François Anquez
  4. Milena D Lazova
  5. Thierry Emonet
  6. Thomas S Shimizu  Is a corresponding author
  1. AMOLF Institute, Netherlands
  2. Yale University, United States

Abstract

We present in vivo single-cell FRET measurements in the Escherichia coli chemotaxis system that reveal pervasive signaling variability, both across cells in isogenic populations and within individual cells over time. We quantify cell-to-cell variability of adaptation, ligand response, as well as steady-state output level, and analyze the role of network design in shaping this diversity from gene expression noise. In the absence of changes in gene expression, we find that single cells demonstrate strong temporal fluctuations. We provide evidence that such signaling noise can arise from at least two sources: (i) stochastic activities of adaptation enzymes, and (ii) receptor-kinase dynamics in the absence of adaptation. We demonstrate that under certain conditions, (ii) can generate giant fluctuations that drive signaling activity of the entire cell into a stochastic two-state switching regime. Our findings underscore the importance of molecular noise, arising not only in gene expression but also in protein networks.

Article and author information

Author details

  1. Johannes M Keegstra

    AMOLF Institute, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8877-4881
  2. Keita Kamino

    AMOLF Institute, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. François Anquez

    AMOLF Institute, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Milena D Lazova

    AMOLF Institute, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Thierry Emonet

    Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6746-6564
  6. Thomas S Shimizu

    AMOLF Institute, Amsterdam, Netherlands
    For correspondence
    shimizu@amolf.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0040-7380

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO Vidi 680-47-515)

  • Thomas S Shimizu

Stichting voor Fundamenteel Onderzoek der Materie (FOM Projectruimte 11PR2958)

  • Thomas S Shimizu

Paul G. Allen Family Foundation (11562)

  • Thierry Emonet
  • Thomas S Shimizu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Keegstra et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,076
    views
  • 652
    downloads
  • 67
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Johannes M Keegstra
  2. Keita Kamino
  3. François Anquez
  4. Milena D Lazova
  5. Thierry Emonet
  6. Thomas S Shimizu
(2017)
Phenotypic diversity and temporal variability in a bacterial signaling network revealed by single-cell FRET
eLife 6:e27455.
https://doi.org/10.7554/eLife.27455

Share this article

https://doi.org/10.7554/eLife.27455

Further reading

    1. Computational and Systems Biology
    Masaaki Uematsu, Jeremy M Baskin
    Tools and Resources

    Plasmid construction is central to life science research, and sequence verification is arguably its costliest step. Long-read sequencing has emerged as a competitor to Sanger sequencing, with the principal benefit that whole plasmids can be sequenced in a single run. Nevertheless, the current cost of nanopore sequencing is still prohibitive for routine sequencing during plasmid construction. We develop a computational approach termed Simple Algorithm for Very Efficient Multiplexing of Oxford Nanopore Experiments for You (SAVEMONEY) that guides researchers to mix multiple plasmids and subsequently computationally de-mixes the resultant sequences. SAVEMONEY defines optimal mixtures in a pre-survey step, and following sequencing, executes a post-analysis workflow involving sequence classification, alignment, and consensus determination. By using Bayesian analysis with prior probability of expected plasmid construction error rate, high-confidence sequences can be obtained for each plasmid in the mixture. Plasmids differing by as little as two bases can be mixed as a single sample for nanopore sequencing, and routine multiplexing of even six plasmids per 180 reads can still maintain high accuracy of consensus sequencing. SAVEMONEY should further democratize whole-plasmid sequencing by nanopore and related technologies, driving down the effective cost of whole-plasmid sequencing to lower than that of a single Sanger sequencing run.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.