Phenotypic diversity and temporal variability in a bacterial signaling network revealed by single-cell FRET

  1. Johannes M Keegstra
  2. Keita Kamino
  3. François Anquez
  4. Milena D Lazova
  5. Thierry Emonet
  6. Thomas S Shimizu  Is a corresponding author
  1. AMOLF Institute, Netherlands
  2. Yale University, United States

Abstract

We present in vivo single-cell FRET measurements in the Escherichia coli chemotaxis system that reveal pervasive signaling variability, both across cells in isogenic populations and within individual cells over time. We quantify cell-to-cell variability of adaptation, ligand response, as well as steady-state output level, and analyze the role of network design in shaping this diversity from gene expression noise. In the absence of changes in gene expression, we find that single cells demonstrate strong temporal fluctuations. We provide evidence that such signaling noise can arise from at least two sources: (i) stochastic activities of adaptation enzymes, and (ii) receptor-kinase dynamics in the absence of adaptation. We demonstrate that under certain conditions, (ii) can generate giant fluctuations that drive signaling activity of the entire cell into a stochastic two-state switching regime. Our findings underscore the importance of molecular noise, arising not only in gene expression but also in protein networks.

Article and author information

Author details

  1. Johannes M Keegstra

    AMOLF Institute, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8877-4881
  2. Keita Kamino

    AMOLF Institute, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. François Anquez

    AMOLF Institute, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Milena D Lazova

    AMOLF Institute, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Thierry Emonet

    Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6746-6564
  6. Thomas S Shimizu

    AMOLF Institute, Amsterdam, Netherlands
    For correspondence
    shimizu@amolf.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0040-7380

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO Vidi 680-47-515)

  • Thomas S Shimizu

Stichting voor Fundamenteel Onderzoek der Materie (FOM Projectruimte 11PR2958)

  • Thomas S Shimizu

Paul G. Allen Family Foundation (11562)

  • Thierry Emonet
  • Thomas S Shimizu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Naama Barkai, Weizmann Institute of Science, Israel

Publication history

  1. Received: April 4, 2017
  2. Accepted: November 17, 2017
  3. Accepted Manuscript published: December 12, 2017 (version 1)
  4. Accepted Manuscript updated: December 14, 2017 (version 2)
  5. Version of Record published: February 12, 2018 (version 3)

Copyright

© 2017, Keegstra et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,354
    Page views
  • 554
    Downloads
  • 36
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Johannes M Keegstra
  2. Keita Kamino
  3. François Anquez
  4. Milena D Lazova
  5. Thierry Emonet
  6. Thomas S Shimizu
(2017)
Phenotypic diversity and temporal variability in a bacterial signaling network revealed by single-cell FRET
eLife 6:e27455.
https://doi.org/10.7554/eLife.27455
  1. Further reading

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Kiri Choi, Won Kyu Kim, Changbong Hyeon
    Research Article

    The projection neurons (PNs), reconstructed from electron microscope (EM) images of the Drosophila olfactory system, offer a detailed view of neuronal anatomy, providing glimpses into information flow in the brain. About 150 uPNs constituting 58 glomeruli in the antennal lobe (AL) are bundled together in the axonal extension, routing the olfactory signal received at AL to mushroom body (MB) calyx and lateral horn (LH). Here we quantify the neuronal organization in terms of the inter-PN distances and examine its relationship with the odor types sensed by Drosophila. The homotypic uPNs that constitute glomeruli are tightly bundled and stereotyped in position throughout the neuropils, even though the glomerular PN organization in AL is no longer sustained in the higher brain center. Instead, odor-type dependent clusters consisting of multiple homotypes innervate the MB calyx and LH. Pheromone-encoding and hygro/thermo-sensing homotypes are spatially segregated in MB calyx, whereas two distinct clusters of food-related homotypes are found in LH in addition to the segregation of pheromone-encoding and hygro/thermo-sensing homotypes. We find that there are statistically significant associations between the spatial organization among a group of homotypic uPNs and certain stereotyped olfactory responses. Additionally, the signals from some of the tightly bundled homotypes converge to a specific group of lateral horn neurons (LHNs), which indicates that homotype (or odor type) specific integration of signals occurs at the synaptic interface between PNs and LHNs. Our findings suggest that before neural computation in the inner brain, some of the olfactory information are already encoded in the spatial organization of uPNs, illuminating that a certain degree of labeled-line strategy is at work in the Drosophila olfactory system.

    1. Computational and Systems Biology
    Christian A Pulver, Emine Celiker ... Fernando Montealegre-Z
    Research Article

    Early predator detection is a key component of the predator-prey arms race and has driven the evolution of multiple animal hearing systems. Katydids (Insecta) have sophisticated ears, each consisting of paired tympana on each foreleg that receive sound both externally, through the air, and internally via a narrowing ear canal running through the leg from an acoustic spiracle on the thorax. These ears are pressure-time difference receivers capable of sensitive and accurate directional hearing across a wide frequency range. Many katydid species have cuticular pinnae which form cavities around the outer tympanal surfaces, but their function is unknown. We investigated pinnal function in the katydid Copiphora gorgonensis by combining experimental biophysics and numerical modelling using 3D ear geometries. We found that the pinnae in C. gorgonensis do not assist in directional hearing for conspecific call frequencies, but instead act as ultrasound detectors. Pinnae induced large sound pressure gains (20–30 dB) that enhanced sound detection at high ultrasonic frequencies (>60 kHz), matching the echolocation range of co-occurring insectivorous gleaning bats. These findings were supported by behavioural and neural audiograms and pinnal cavity resonances from live specimens, and comparisons with the pinnal mechanics of sympatric katydid species, which together suggest that katydid pinnae primarily evolved for the enhanced detection of predatory bats.