Chemoreception: Keeping carbon dioxide in check
Changes in the level of carbon dioxide molecules and hydrogen ions in the blood can change its pH, and this can have a negative impact on brain function. To avoid this, mammals rely on specialized cells in the brainstem called central chemoreceptors that can detect changes in the pH of the blood. When these chemoreceptors detect such a change, the body responds by regulating blood flow and breathing. However, changes in the rate at which blood flows through the brain make it more difficult to detect changes in its pH.
The pH of a liquid is determined by the concentration of hydrogen ions in it: the higher the concentration of hydrogen ions, the lower the pH. Carbon dioxide influences the pH of blood by reacting with water to form carbonic acid (H2CO3), which can dissociate to form a hydrogen ion (H+) and a hydrogen carbonate ion (HCO3-). Increasing the concentration of carbon dioxide in the blood therefore results in more H+ ions and a lower pH. However, both these reactions are reversible, and breathing heavily to remove carbon dioxide from the body will lead to a reduction in the concentration of the H+ and HCO3- ions, and hence to an increase in pH.
For over a century, it was thought that all the blood vessels in the brain reacted to increased levels of carbon dioxide in the blood by becoming wider to increase blood flow. Now, in eLife, Daniel Mulkey of the University of Connecticut, Thiago Moreira of the University of Sao Paulo and colleagues – including Virginia Hawkins as first author – report that elevated levels of carbon dioxide (a condition known as hypercapnia) cause the blood vessels in the brainstem to become narrower, while the blood vessels in the rest of the brain become wider (Hawkins et al., 2017).
Although the magnitude of the narrowing observed in the brainstem is modest (the diameter of the arteriole is reduced by less than 10%), the phenomenon reported by Hawkins et al. is reminiscent of the way that a shortage of oxygen (a condition known as hypoxia) causes the small pulmonary arteries in the lung to become narrower. This process optimizes lung function by redirecting of blood flow to areas of the lung where there is little blood flow, thereby increasing the surface area for gas exchange (Ward and McMurtry, 2009). Similarly, the narrowing of the blood vessels in the brainstem caused by increased levels of carbon dioxide might, according to Hawkins et al., help the body to measure the levels of carbon dioxide and H+ ions in the blood more accurately.
While neurons throughout the brainstem are known to be involved in the detection of carbon dioxide and H+ ions (Guyenet et al., 2010), the neurons in two regions of the brainstem – the ventrolateral medulla and the retrotrapezoid nucleus – have a particularly significant role (Kumar et al., 2015). However, the discovery in 2010 that astrocytes (cells in the brain and spinal cord that are not neurons) were also involved in central chemoreception showed that the regulation of breathing was more complex than expected (Gourine et al., 2010). The results of the elegant study by Hawkins et al. are further evidence in support of such complexity.
These are exciting times for the field. For over a half of a century, the drive to understand central chemosensitivity has understandably been focused on the cellular and molecular substrates of the phenomenon. However, growing evidence supports the notion that central chemosensitivity is a property that emerges from concerted interactions across the multiple cell types in the neurovascular unit, and that physiological interactions have an important role. While the phenomenon reported by Hawkins et al. appears to be small in magnitude, its potential impact on physiology cannot be dismissed.
Further research is now needed to address a number of questions: Does the constriction of the blood vessels seen by Hawkins et al. influence the pH of the surrounding tissue? Does the constriction have an impact on the cellular physiology of the neurons and astrocytes in the neurovascular unit? And how do the blood vessels in other regions of the brainstem respond to high levels of carbon dioxide? Answering these questions could, ultimately, lead to a systems-level understanding of the mechanisms underlying central chemosensitivity, and thus provide insights into the variability of this process in both health and disease.
References
-
Central respiratory chemoreceptionJournal of Comparative Neurology 518:3883–3906.https://doi.org/10.1002/cne.22435
Article and author information
Author details
Publication history
- Version of Record published: May 17, 2017 (version 1)
Copyright
© 2017, Garcia et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,927
- Page views
-
- 114
- Downloads
-
- 1
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Genetics and Genomics
- Neuroscience
A hexanucleotide repeat expansion in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). A hallmark of ALS/FTD pathology is the presence of dipeptide repeat (DPR) proteins, produced from both sense GGGGCC (poly-GA, poly-GP, poly-GR) and antisense CCCCGG (poly-PR, poly-PG, poly-PA) transcripts. Translation of sense DPRs, such as poly-GA and poly-GR, depends on non-canonical (non-AUG) initiation codons. Here, we provide evidence for canonical AUG-dependent translation of two antisense DPRs, poly-PR and poly-PG. A single AUG is required for synthesis of poly-PR, one of the most toxic DPRs. Unexpectedly, we found redundancy between three AUG codons necessary for poly-PG translation. Further, the eukaryotic translation initiation factor 2D (EIF2D), which was previously implicated in sense DPR synthesis, is not required for AUG-dependent poly-PR or poly-PG translation, suggesting that distinct translation initiation factors control DPR synthesis from sense and antisense transcripts. Our findings on DPR synthesis from the C9ORF72 locus may be broadly applicable to many other nucleotide repeat expansion disorders.
-
- Cell Biology
- Neuroscience
The amyloid beta (Aβ) plaques found in Alzheimer’s disease (AD) patients’ brains contain collagens and are embedded extracellularly. Several collagens have been proposed to influence Aβ aggregate formation, yet their role in clearance is unknown. To investigate the potential role of collagens in forming and clearance of extracellular aggregates in vivo, we created a transgenic Caenorhabditis elegans strain that expresses and secretes human Aβ1-42. This secreted Aβ forms aggregates in two distinct places within the extracellular matrix. In a screen for extracellular human Aβ aggregation regulators, we identified different collagens to ameliorate or potentiate Aβ aggregation. We show that a disintegrin and metalloprotease a disintegrin and metalloprotease 2 (ADM-2), an ortholog of ADAM9, reduces the load of extracellular Aβ aggregates. ADM-2 is required and sufficient to remove the extracellular Aβ aggregates. Thus, we provide in vivo evidence of collagens essential for aggregate formation and metalloprotease participating in extracellular Aβ aggregate removal.