Chemoreception: Keeping carbon dioxide in check
Changes in the level of carbon dioxide molecules and hydrogen ions in the blood can change its pH, and this can have a negative impact on brain function. To avoid this, mammals rely on specialized cells in the brainstem called central chemoreceptors that can detect changes in the pH of the blood. When these chemoreceptors detect such a change, the body responds by regulating blood flow and breathing. However, changes in the rate at which blood flows through the brain make it more difficult to detect changes in its pH.
The pH of a liquid is determined by the concentration of hydrogen ions in it: the higher the concentration of hydrogen ions, the lower the pH. Carbon dioxide influences the pH of blood by reacting with water to form carbonic acid (H2CO3), which can dissociate to form a hydrogen ion (H+) and a hydrogen carbonate ion (HCO3-). Increasing the concentration of carbon dioxide in the blood therefore results in more H+ ions and a lower pH. However, both these reactions are reversible, and breathing heavily to remove carbon dioxide from the body will lead to a reduction in the concentration of the H+ and HCO3- ions, and hence to an increase in pH.
For over a century, it was thought that all the blood vessels in the brain reacted to increased levels of carbon dioxide in the blood by becoming wider to increase blood flow. Now, in eLife, Daniel Mulkey of the University of Connecticut, Thiago Moreira of the University of Sao Paulo and colleagues – including Virginia Hawkins as first author – report that elevated levels of carbon dioxide (a condition known as hypercapnia) cause the blood vessels in the brainstem to become narrower, while the blood vessels in the rest of the brain become wider (Hawkins et al., 2017).
Although the magnitude of the narrowing observed in the brainstem is modest (the diameter of the arteriole is reduced by less than 10%), the phenomenon reported by Hawkins et al. is reminiscent of the way that a shortage of oxygen (a condition known as hypoxia) causes the small pulmonary arteries in the lung to become narrower. This process optimizes lung function by redirecting of blood flow to areas of the lung where there is little blood flow, thereby increasing the surface area for gas exchange (Ward and McMurtry, 2009). Similarly, the narrowing of the blood vessels in the brainstem caused by increased levels of carbon dioxide might, according to Hawkins et al., help the body to measure the levels of carbon dioxide and H+ ions in the blood more accurately.
While neurons throughout the brainstem are known to be involved in the detection of carbon dioxide and H+ ions (Guyenet et al., 2010), the neurons in two regions of the brainstem – the ventrolateral medulla and the retrotrapezoid nucleus – have a particularly significant role (Kumar et al., 2015). However, the discovery in 2010 that astrocytes (cells in the brain and spinal cord that are not neurons) were also involved in central chemoreception showed that the regulation of breathing was more complex than expected (Gourine et al., 2010). The results of the elegant study by Hawkins et al. are further evidence in support of such complexity.
These are exciting times for the field. For over a half of a century, the drive to understand central chemosensitivity has understandably been focused on the cellular and molecular substrates of the phenomenon. However, growing evidence supports the notion that central chemosensitivity is a property that emerges from concerted interactions across the multiple cell types in the neurovascular unit, and that physiological interactions have an important role. While the phenomenon reported by Hawkins et al. appears to be small in magnitude, its potential impact on physiology cannot be dismissed.
Further research is now needed to address a number of questions: Does the constriction of the blood vessels seen by Hawkins et al. influence the pH of the surrounding tissue? Does the constriction have an impact on the cellular physiology of the neurons and astrocytes in the neurovascular unit? And how do the blood vessels in other regions of the brainstem respond to high levels of carbon dioxide? Answering these questions could, ultimately, lead to a systems-level understanding of the mechanisms underlying central chemosensitivity, and thus provide insights into the variability of this process in both health and disease.
References
-
Central respiratory chemoreceptionJournal of Comparative Neurology 518:3883–3906.https://doi.org/10.1002/cne.22435
Article and author information
Author details
Publication history
Copyright
© 2017, Garcia et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,761
- views
-
- 136
- downloads
-
- 10
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Immunology and Inflammation
- Neuroscience
Somatic genetic heterogeneity resulting from post-zygotic DNA mutations is widespread in human tissues and can cause diseases, however, few studies have investigated its role in neurodegenerative processes such as Alzheimer’s disease (AD). Here, we report the selective enrichment of microglia clones carrying pathogenic variants, that are not present in neuronal, glia/stromal cells, or blood, from patients with AD in comparison to age-matched controls. Notably, microglia-specific AD-associated variants preferentially target the MAPK pathway, including recurrent CBL ring-domain mutations. These variants activate ERK and drive a microglia transcriptional program characterized by a strong neuro-inflammatory response, both in vitro and in patients. Although the natural history of AD-associated microglial clones is difficult to establish in humans, microglial expression of a MAPK pathway activating variant was previously shown to cause neurodegeneration in mice, suggesting that AD-associated neuroinflammatory microglial clones may contribute to the neurodegenerative process in patients.
-
- Neuroscience
To navigate real-world listening conditions, the auditory system relies on the integration of multiple sources of information. However, to avoid inappropriate cross-talk between inputs, highly connected neural systems need to strike a balance between integration and segregation. Here, we develop a novel approach to examine how repeated neurochemical modules in the mouse inferior colliculus lateral cortex (LC) allow controlled integration of its multimodal inputs. The LC had been impossible to study via imaging because it is buried in a sulcus. Therefore, we coupled two-photon microscopy with the use of a microprism to reveal the first-ever sagittal views of the LC to examine neuronal responses with respect to its neurochemical motifs under anesthetized and awake conditions. This approach revealed marked differences in the acoustic response properties of LC and neighboring non-lemniscal portions of the inferior colliculus. In addition, we observed that the module and matrix cellular motifs of the LC displayed distinct somatosensory and auditory responses. Specifically, neurons in modules demonstrated primarily offset responses to acoustic stimuli with enhancement in responses to bimodal stimuli, whereas matrix neurons showed onset response to acoustic stimuli and suppressed responses to bimodal stimulation. Thus, this new approach revealed that the repeated structural motifs of the LC permit functional integration of multimodal inputs while retaining distinct response properties.