Structure of RNA polymerase bound to ribosomal 30S subunit

  1. Gabriel Demo
  2. Aviram Rasouly
  3. Nikita Vasilyev
  4. Vladimir Svetlov
  5. Anna B Loveland
  6. Ruben Diaz-Avalos
  7. Nikolaus Grigorieff
  8. Evgeny Nudler  Is a corresponding author
  9. Andrei A Korostelev  Is a corresponding author
  1. University of Massachusetts Medical School, United States
  2. New York University School of Medicine, United States
  3. Janelia Research Campus, Howard Hughes Medical Institute, United States

Abstract

In bacteria, mRNA transcription and translation are coupled to coordinate optimal gene expression and maintain genome stability. Coupling is thought to involve direct interactions between RNA polymerase (RNAP) and the translational machinery. We present cryo-EM structures of E. coli RNAP core bound to the small ribosomal 30S subunit. The complex is stable under cell-like ionic conditions, consistent with functional interaction between RNAP and the 30S subunit. The RNA exit tunnel of RNAP aligns with the Shine-Dalgarno-binding site of the 30S subunit. Ribosomal protein S1 forms a wall of the tunnel between RNAP and the 30S subunit, consistent with its role in directing mRNAs onto the ribosome. The nucleic-acid-binding cleft of RNAP samples distinct conformations, suggesting different functional states during transcription-translation coupling. The architecture of the 30S•RNAP complex provides a structural basis for co-localization of the transcriptional and translational machineries, and inform future mechanistic studies of coupled transcription and translation.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Gabriel Demo

    RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  2. Aviram Rasouly

    Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  3. Nikita Vasilyev

    Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  4. Vladimir Svetlov

    Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  5. Anna B Loveland

    RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  6. Ruben Diaz-Avalos

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  7. Nikolaus Grigorieff

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    Nikolaus Grigorieff, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1506-909X
  8. Evgeny Nudler

    Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
    For correspondence
    evgeny.nudler@nyumc.org
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8811-3071
  9. Andrei A Korostelev

    RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
    For correspondence
    andrei.korostelev@umassmed.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1588-717X

Funding

National Institutes of Health (GM106105)

  • Andrei A Korostelev

National Institutes of Health (GM107465)

  • Andrei A Korostelev

National Institutes of Health (GM107329)

  • Evgeny Nudler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Demo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,041
    views
  • 966
    downloads
  • 76
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gabriel Demo
  2. Aviram Rasouly
  3. Nikita Vasilyev
  4. Vladimir Svetlov
  5. Anna B Loveland
  6. Ruben Diaz-Avalos
  7. Nikolaus Grigorieff
  8. Evgeny Nudler
  9. Andrei A Korostelev
(2017)
Structure of RNA polymerase bound to ribosomal 30S subunit
eLife 6:e28560.
https://doi.org/10.7554/eLife.28560

Share this article

https://doi.org/10.7554/eLife.28560

Further reading

    1. Biochemistry and Chemical Biology
    Luca Unione, Jesús Jiménez-Barbero
    Insight

    Glycans play an important role in modulating the interactions between natural killer cells and antibodies to fight pathogens and harmful cells.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Kristina Ehring, Sophia Friederike Ehlers ... Kay Grobe
    Research Article

    The Sonic hedgehog (Shh) signaling pathway controls embryonic development and tissue homeostasis after birth. This requires regulated solubilization of dual-lipidated, firmly plasma membrane-associated Shh precursors from producing cells. Although it is firmly established that the resistance-nodulation-division transporter Dispatched (Disp) drives this process, it is less clear how lipidated Shh solubilization from the plasma membrane is achieved. We have previously shown that Disp promotes proteolytic solubilization of Shh from its lipidated terminal peptide anchors. This process, termed shedding, converts tightly membrane-associated hydrophobic Shh precursors into delipidated soluble proteins. We show here that Disp-mediated Shh shedding is modulated by a serum factor that we identify as high-density lipoprotein (HDL). In addition to serving as a soluble sink for free membrane cholesterol, HDLs also accept the cholesterol-modified Shh peptide from Disp. The cholesteroylated Shh peptide is necessary and sufficient for Disp-mediated transfer because artificially cholesteroylated mCherry associates with HDL in a Disp-dependent manner, whereas an N-palmitoylated Shh variant lacking C-cholesterol does not. Disp-mediated Shh transfer to HDL is completed by proteolytic processing of the palmitoylated N-terminal membrane anchor. In contrast to dual-processed soluble Shh with moderate bioactivity, HDL-associated N-processed Shh is highly bioactive. We propose that the purpose of generating different soluble forms of Shh from the dual-lipidated precursor is to tune cellular responses in a tissue-type and time-specific manner.