Structure of RNA polymerase bound to ribosomal 30S subunit

  1. Gabriel Demo
  2. Aviram Rasouly
  3. Nikita Vasilyev
  4. Vladimir Svetlov
  5. Anna B Loveland
  6. Ruben Diaz-Avalos
  7. Nikolaus Grigorieff
  8. Evgeny Nudler  Is a corresponding author
  9. Andrei A Korostelev  Is a corresponding author
  1. University of Massachusetts Medical School, United States
  2. New York University School of Medicine, United States
  3. Janelia Research Campus, Howard Hughes Medical Institute, United States

Abstract

In bacteria, mRNA transcription and translation are coupled to coordinate optimal gene expression and maintain genome stability. Coupling is thought to involve direct interactions between RNA polymerase (RNAP) and the translational machinery. We present cryo-EM structures of E. coli RNAP core bound to the small ribosomal 30S subunit. The complex is stable under cell-like ionic conditions, consistent with functional interaction between RNAP and the 30S subunit. The RNA exit tunnel of RNAP aligns with the Shine-Dalgarno-binding site of the 30S subunit. Ribosomal protein S1 forms a wall of the tunnel between RNAP and the 30S subunit, consistent with its role in directing mRNAs onto the ribosome. The nucleic-acid-binding cleft of RNAP samples distinct conformations, suggesting different functional states during transcription-translation coupling. The architecture of the 30S•RNAP complex provides a structural basis for co-localization of the transcriptional and translational machineries, and inform future mechanistic studies of coupled transcription and translation.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Gabriel Demo

    RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  2. Aviram Rasouly

    Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  3. Nikita Vasilyev

    Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  4. Vladimir Svetlov

    Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  5. Anna B Loveland

    RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  6. Ruben Diaz-Avalos

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  7. Nikolaus Grigorieff

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    Nikolaus Grigorieff, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1506-909X
  8. Evgeny Nudler

    Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
    For correspondence
    evgeny.nudler@nyumc.org
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8811-3071
  9. Andrei A Korostelev

    RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
    For correspondence
    andrei.korostelev@umassmed.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1588-717X

Funding

National Institutes of Health (GM106105)

  • Andrei A Korostelev

National Institutes of Health (GM107465)

  • Andrei A Korostelev

National Institutes of Health (GM107329)

  • Evgeny Nudler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Demo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,147
    views
  • 974
    downloads
  • 78
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gabriel Demo
  2. Aviram Rasouly
  3. Nikita Vasilyev
  4. Vladimir Svetlov
  5. Anna B Loveland
  6. Ruben Diaz-Avalos
  7. Nikolaus Grigorieff
  8. Evgeny Nudler
  9. Andrei A Korostelev
(2017)
Structure of RNA polymerase bound to ribosomal 30S subunit
eLife 6:e28560.
https://doi.org/10.7554/eLife.28560

Share this article

https://doi.org/10.7554/eLife.28560

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yi-Hsuan Lin, Tae Hun Kim ... Hue Sun Chan
    Research Article

    Liquid-liquid phase separation (LLPS) involving intrinsically disordered protein regions (IDRs) is a major physical mechanism for biological membraneless compartmentalization. The multifaceted electrostatic effects in these biomolecular condensates are exemplified here by experimental and theoretical investigations of the different salt- and ATP-dependent LLPSs of an IDR of messenger RNA-regulating protein Caprin1 and its phosphorylated variant pY-Caprin1, exhibiting, for example, reentrant behaviors in some instances but not others. Experimental data are rationalized by physical modeling using analytical theory, molecular dynamics, and polymer field-theoretic simulations, indicating that interchain ion bridges enhance LLPS of polyelectrolytes such as Caprin1 and the high valency of ATP-magnesium is a significant factor for its colocalization with the condensed phases, as similar trends are observed for other IDRs. The electrostatic nature of these features complements ATP’s involvement in π-related interactions and as an amphiphilic hydrotrope, underscoring a general role of biomolecular condensates in modulating ion concentrations and its functional ramifications.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Silvia Galli, Marco Di Antonio
    Insight

    The buildup of knot-like RNA structures in brain cells may be the key to understanding how uncontrolled protein aggregation drives Alzheimer’s disease.